(a)
∣∣111pqqrprr2p2q2∣∣=(p−q)(q−r)(p−r)(p+q+r)
∣∣111pqqrprr2p2q2∣∣=∣∣qrprp2q2∣∣−∣∣pqprr2q2∣∣+∣∣pqqrr2p2∣∣==q3r−p3r−pq3+pr3+p3q−qr3=(q3r−p3r)+(p3q−pq3)+(pr3−qr3)==r(q3−p3)+pq(p2−q2)+r3(p−q)=−r(p−q)(p2+pq+q2)+pq(p−q)(p+q)++r3(p−q)=(p−q)(−r(p2+pq+q2)+pq(p+q)+r3)=(p−q)(−p2r−pqr−q2r++p2q+pq2+r3)=(p−q)((p2q−p2r)−(q2r−r3)+(pq2−pqr))==(p−q)(p2(q−r)−r(q2−r2)+pq(q−r))=(p−q)(p2(q−r)−r(q−r)(q+r)++pq(q−r))=(p−q)(q−r)(p2−r(q+r)+pq)=(p−q)(q−r)(p2−rq−r2+pq)==(p−q)(q−r)((p2−r2)+(pq−rq))=(p−q)(q−r)((p−r)(p+r)+q(p−r))==(p−q)(q−r)(p−r)(p+q+r)
(b)⎝⎛111(R+1)x(R+3)x(R+1)(R+3)(R+3)2(R+1)2x2⎠⎞is a singular matrix⇒
∣∣111(R+1)x(R+3)x(R+1)(R+3)(R+3)2(R+1)2x2∣∣=0
∣∣111(R+1)x(R+3)x(R+1)(R+3)(R+3)2(R+1)2x2∣∣=((R+1)−x)((R+3)−x)((R+3)−(R+1))((R+1)+(R+3)+x)=2(R+1−x)(R+3−x)(2R+4+x)=0x=R+1 orx=R+3 orx=−2R−4
Comments