(This image is for reference and better understanding)
Draw a hypothetical line QCG such that it passes through middle and perpendicular to AD and EH.
"AC=\\frac{a}{2};AB=x;BC=\\frac{a}{2}-x" ;
"EG=\\frac{a}{2};EF=y;FG=\\frac{a}{2}-y;"
In "\\triangle QCA,QC=QA\\ sin 60\\degree=a\\frac{\\sqrt{3}}{2}"
"GC=HD=a" ;"QG=a+\\frac{\\sqrt{3}}{2}a"
As "\\triangle QBC" and "\\triangle QFG" are similar,
So,"\\frac{QC}{QG}=\\frac{BC}{FG}" ;
"\\frac{\\frac{\\sqrt{3}}{2}a}{(\\frac{\\sqrt{3}}{2}+1)a}=\\frac{\\frac{a}{2}-x}{\\frac{a}{2}-y}" ;
"\\frac{\\frac{\\sqrt{3}}{2}}{(\\frac{\\sqrt{3}}{2}+1)}=\\frac{a-2x}{a-2y}" ;
"\\frac{{\\sqrt{3}}}{(\\sqrt{3}+2)}=\\frac{a-2x}{a-2y}" ;
"\\sqrt{3}a-2\\sqrt{3}y=(2+\\sqrt{3})a-2(2+\\sqrt{3})x;"
"y=\\frac{2(2+\\sqrt{3})x-2a}{2\\sqrt{3}}"
Comments
According to conditions of the question, a triangle is equal-sided, then all internal angles of this triangle are 60 degrees. A derivation of the value of the sine of 60 degrees can be found at https://www.mathsisfun.com/geometry/unit-circle.html.
How did you get sin60 ?
Leave a comment