Let "BX=\\frac{1}{3}BC" and "BY=\\frac{2}{3}BC" .
Consider "\\overrightarrow{AB}" and "\\overrightarrow{AC}" as a basis of a vector space.
We have
1)"\\overrightarrow{BC}=\\overrightarrow{AC}-\\overrightarrow{AB}" , so "|\\overrightarrow{BC}|^2=|\\overrightarrow{AC}|^2+|\\overrightarrow{AB}|^2-2(\\overrightarrow{AC},\\overrightarrow{AB})." That is "(\\overrightarrow{AC},\\overrightarrow{AB})=\\frac{1}{2}(AC^2+AB^2-BC^2)"
2)"\\overrightarrow{AX}=\\overrightarrow{AB}+\\overrightarrow{BX}=\\overrightarrow{AB}+\\frac{1}{3}\\overrightarrow{BC}=\\overrightarrow{AB}+\\frac{1}{3}(\\overrightarrow{AC}-\\overrightarrow{AB})="
"=\\frac{2}{3}\\overrightarrow{AB}+\\frac{1}{3}\\overrightarrow{AC}", so "|\\overrightarrow{AX}|^2=\\frac{4}{9}|\\overrightarrow{AB}|^2+\\frac{1}{9}|\\overrightarrow{AC}|^2+\\frac{4}{9}(\\overrightarrow{AB},\\overrightarrow{AC})="
"=\\frac{4}{9}AB^2+\\frac{1}{9}AC^2+\\frac{2}{9}(AC^2+AB^2-BC^2)="
"=\\frac{2}{3}AB^2+\\frac{1}{3}AC^2-\\frac{2}{9}BC^2"
3)"\\overrightarrow{AY}=\\overrightarrow{AB}+\\overrightarrow{BY}=\\overrightarrow{AB}+\\frac{2}{3}\\overrightarrow{BC}=\\overrightarrow{AB}+\\frac{2}{3}(\\overrightarrow{AC}-\\overrightarrow{AB})="
"=\\frac{1}{3}\\overrightarrow{AB}+\\frac{2}{3}\\overrightarrow{AC}", so "|\\overrightarrow{AY}|^2=\\frac{1}{9}|\\overrightarrow{AB}|^2+\\frac{4}{9}|\\overrightarrow{AC}|^2+\\frac{4}{9}(\\overrightarrow{AB},\\overrightarrow{AC})="
"\\frac{1}{9}AB^2+\\frac{4}{9}AC^2+\\frac{2}{9}(AC^2+AB^2-BC^2)="
"=\\frac{1}{3}AB^2+\\frac{2}{3}AC^2-\\frac{2}{9}BC^2"
4)From 2 and 3 we obtain "AX^2+AY^2=\\bigl(\\frac{2}{3}AB^2+\\frac{1}{3}AC^2-\\frac{2}{9}BC^2\\bigr)+"
"+\\bigl(\\frac{1}{3}AB^2+\\frac{2}{3}AC^2-\\frac{2}{9}BC^2\\bigr)=AB^2+AC^2-\\frac{4}{9}BC^2"
Since "XY=\\frac{1}{3}BC", we have "XY^2=\\frac{1}{9}BC^2" , so "AX^2+AY^2=AB^2+AC^2-\\frac{4}{9}BC^2=AB^2+AC^2-4XY^2" . Moving "4XY^2" to the left side, we obtain "AX^2+AY^2+4XY^2=AB^2+AC^2" .
Comments
Leave a comment