Let BX=31BC and BY=32BC .
Consider AB and AC as a basis of a vector space.
We have
1)BC=AC−AB , so ∣BC∣2=∣AC∣2+∣AB∣2−2(AC,AB). That is (AC,AB)=21(AC2+AB2−BC2)
2)AX=AB+BX=AB+31BC=AB+31(AC−AB)=
=32AB+31AC, so ∣AX∣2=94∣AB∣2+91∣AC∣2+94(AB,AC)=
=94AB2+91AC2+92(AC2+AB2−BC2)=
=32AB2+31AC2−92BC2
3)AY=AB+BY=AB+32BC=AB+32(AC−AB)=
=31AB+32AC, so ∣AY∣2=91∣AB∣2+94∣AC∣2+94(AB,AC)=
91AB2+94AC2+92(AC2+AB2−BC2)=
=31AB2+32AC2−92BC2
4)From 2 and 3 we obtain AX2+AY2=(32AB2+31AC2−92BC2)+
+(31AB2+32AC2−92BC2)=AB2+AC2−94BC2
Since XY=31BC, we have XY2=91BC2 , so AX2+AY2=AB2+AC2−94BC2=AB2+AC2−4XY2 . Moving 4XY2 to the left side, we obtain AX2+AY2+4XY2=AB2+AC2 .
Comments