Question #95767
The base BC of triangle ABC is trisected at X and Y .
Show that |AX|
2 + |AY|
2 + 4|XY|
2 = |AB|
2 + |AC|
2
1
Expert's answer
2019-10-03T08:44:37-0400

Let BX=13BCBX=\frac{1}{3}BC and BY=23BCBY=\frac{2}{3}BC .

Consider AB\overrightarrow{AB} and AC\overrightarrow{AC} as a basis of a vector space.

We have

1)BC=ACAB\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB} , so BC2=AC2+AB22(AC,AB).|\overrightarrow{BC}|^2=|\overrightarrow{AC}|^2+|\overrightarrow{AB}|^2-2(\overrightarrow{AC},\overrightarrow{AB}). That is (AC,AB)=12(AC2+AB2BC2)(\overrightarrow{AC},\overrightarrow{AB})=\frac{1}{2}(AC^2+AB^2-BC^2)

2)AX=AB+BX=AB+13BC=AB+13(ACAB)=\overrightarrow{AX}=\overrightarrow{AB}+\overrightarrow{BX}=\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}=\overrightarrow{AB}+\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})=

=23AB+13AC=\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}, so AX2=49AB2+19AC2+49(AB,AC)=|\overrightarrow{AX}|^2=\frac{4}{9}|\overrightarrow{AB}|^2+\frac{1}{9}|\overrightarrow{AC}|^2+\frac{4}{9}(\overrightarrow{AB},\overrightarrow{AC})=

=49AB2+19AC2+29(AC2+AB2BC2)==\frac{4}{9}AB^2+\frac{1}{9}AC^2+\frac{2}{9}(AC^2+AB^2-BC^2)=

=23AB2+13AC229BC2=\frac{2}{3}AB^2+\frac{1}{3}AC^2-\frac{2}{9}BC^2

3)AY=AB+BY=AB+23BC=AB+23(ACAB)=\overrightarrow{AY}=\overrightarrow{AB}+\overrightarrow{BY}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}=\overrightarrow{AB}+\frac{2}{3}(\overrightarrow{AC}-\overrightarrow{AB})=

=13AB+23AC=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}, so AY2=19AB2+49AC2+49(AB,AC)=|\overrightarrow{AY}|^2=\frac{1}{9}|\overrightarrow{AB}|^2+\frac{4}{9}|\overrightarrow{AC}|^2+\frac{4}{9}(\overrightarrow{AB},\overrightarrow{AC})=

19AB2+49AC2+29(AC2+AB2BC2)=\frac{1}{9}AB^2+\frac{4}{9}AC^2+\frac{2}{9}(AC^2+AB^2-BC^2)=

=13AB2+23AC229BC2=\frac{1}{3}AB^2+\frac{2}{3}AC^2-\frac{2}{9}BC^2

4)From 2 and 3 we obtain AX2+AY2=(23AB2+13AC229BC2)+AX^2+AY^2=\bigl(\frac{2}{3}AB^2+\frac{1}{3}AC^2-\frac{2}{9}BC^2\bigr)+

+(13AB2+23AC229BC2)=AB2+AC249BC2+\bigl(\frac{1}{3}AB^2+\frac{2}{3}AC^2-\frac{2}{9}BC^2\bigr)=AB^2+AC^2-\frac{4}{9}BC^2

Since XY=13BCXY=\frac{1}{3}BC, we have XY2=19BC2XY^2=\frac{1}{9}BC^2 , so AX2+AY2=AB2+AC249BC2=AB2+AC24XY2AX^2+AY^2=AB^2+AC^2-\frac{4}{9}BC^2=AB^2+AC^2-4XY^2 . Moving 4XY24XY^2 to the left side, we obtain AX2+AY2+4XY2=AB2+AC2AX^2+AY^2+4XY^2=AB^2+AC^2 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS