Question #94870
In a parallelogram ABCD, P divides AB in the ratio 2:5 and Q divides DC in the ratio 3:2. If AC and PQ intersect at R , find the ratios AR:RC and PR:RQ
1
Expert's answer
2019-09-20T11:07:21-0400


1)ABCDAB||CD, PQPQ is transversal line, RPA\angle RPA and CQR\angle CQR are alternate interior angles, so RPA=CQR\angle RPA=\angle CQR

2)ABCDAB||CD, ACAC is transversal line, PAR\angle PAR and QCR\angle QCR are alternate interior angles, so PAR=QCR\angle PAR=\angle QCR

3)PRA=πRPAPAR\angle PRA=\pi-\angle RPA-\angle PAR in ΔAPR\Delta APR , CRQ=πCQRCRQ\angle CRQ=\pi-\angle CQR-\angle CRQ in ΔCRQ\Delta CRQ

PRA=πRPAPAR=πCQRCRQ=CRQ\angle PRA=\pi-\angle RPA-\angle PAR=\pi-\angle CQR-\angle CRQ=\angle CRQ

So ΔAPRΔCQR\Delta APR \sim \Delta CQR and we have APCQ=ARCR=PRQR\frac{AP}{CQ}=\frac{AR}{CR}=\frac{PR}{QR}

Since APBP=25\frac{AP}{BP}=\frac{2}{5}, we obtain that AP=2xAP=2x and BP=5xBP=5x for some xx

Similarly we obtain that DQ=3yDQ=3y and QC=2yQC=2y for some yy

So 7x=AP+BP=AB=CD=CQ+QD=5y7x=AP+BP=AB=CD=CQ+QD=5y , and y=1.4xy=1.4x

We have ARCR=PRQR=APCQ=2x2y=2x21.4x=57\frac{AR}{CR}=\frac{PR}{QR}=\frac{AP}{CQ}=\frac{2x}{2y}=\frac{2x}{2\cdot 1.4x}=\frac{5}{7}

Answer: ARCR=PRQR=57\frac{AR}{CR}=\frac{PR}{QR}=\frac{5}{7}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS