1)"AB||CD", "PQ" is transversal line, "\\angle RPA" and "\\angle CQR" are alternate interior angles, so "\\angle RPA=\\angle CQR"
2)"AB||CD", "AC" is transversal line, "\\angle PAR" and "\\angle QCR" are alternate interior angles, so "\\angle PAR=\\angle QCR"
3)"\\angle PRA=\\pi-\\angle RPA-\\angle PAR" in "\\Delta APR" , "\\angle CRQ=\\pi-\\angle CQR-\\angle CRQ" in "\\Delta CRQ"
"\\angle PRA=\\pi-\\angle RPA-\\angle PAR=\\pi-\\angle CQR-\\angle CRQ=\\angle CRQ"
So "\\Delta APR \\sim \\Delta CQR" and we have "\\frac{AP}{CQ}=\\frac{AR}{CR}=\\frac{PR}{QR}"
Since "\\frac{AP}{BP}=\\frac{2}{5}", we obtain that "AP=2x" and "BP=5x" for some "x"
Similarly we obtain that "DQ=3y" and "QC=2y" for some "y"
So "7x=AP+BP=AB=CD=CQ+QD=5y" , and "y=1.4x"
We have "\\frac{AR}{CR}=\\frac{PR}{QR}=\\frac{AP}{CQ}=\\frac{2x}{2y}=\\frac{2x}{2\\cdot 1.4x}=\\frac{5}{7}"
Answer: "\\frac{AR}{CR}=\\frac{PR}{QR}=\\frac{5}{7}"
Comments
Leave a comment