Answer to Question #94687 in Geometry for Emmanuel Daniels

Question #94687
In a parallelogram ABCD, P divides AB in the ratio 2 : 5 and Q divides DC in the ratio 3 : 2. If AC and PQ intersect at R, find the ratios AR : RC and PR : RQ
1
Expert's answer
2019-09-17T11:28:57-0400

AKPQAK||PQ and PQLCPQ||LC

AO=hAO=h (height)

APRAPR and CQRCQR similar triangles AR/RC=PR/RQAR/RC=PR/RQ

AP=2XPB=5XDQ=3YQC=2Y2X+5X=3Y+2YX/Y=5/7AreaAPQK=2XhAreaPLCQ=2YhAreaAPQK/AreaPLCQ=AR/RC=PR/RQ=(2Xh)/(2Yh)=X/Y=5/7AP=2*X\\ PB=5*X\\ DQ=3*Y\\ QC=2*Y\\ 2*X+5*X=3*Y+2*Y\\ X/Y=5/7\\ Area APQK=2*X*h\\ Area PLCQ=2*Y*h\\ AreaAPQK/AreaPLCQ=AR/RC=PR/RQ=(2*X*h)/(2*Y*h)=X/Y=5/7

Answer: AR/RC=PR/RQ=5/7AR/RC=PR/RQ=5/7


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment