Given a triangle whose sides are 42 cm, 50 cm, and 63 cm. Find the radius of a circle which is tangent to the 50 cm and 63 cm side of the triangle, and whose center lies on the third side.
"S_{ABC}=\\sqrt{\\smash[b]{p(p-a)(p-b)(p-c)}}"
"p={a+b+c \\over 2}"
"AB=a=50, BC=b=63, AC=c=42"
"p={50+63+42 \\over 2}={155 \\over 2}=77.5"
"S_{ABC}=\\sqrt{\\smash[b]{77.5 \\ast (77.5-50) \\ast (77.5-63) \\ast (77.5-42)}}"
"S_{ABC}=1.25 \\ast \\sqrt{702119}"
"S_{ABC}=S_{ABO}+S_{OBC}={R \\ast AB \\over 2}+{R \\ast BC \\over 2}"
"S_{ABC}={50 \\ast R \\over 2}+{63 \\ast R \\over 2}={113 \\ast R \\over 2}"
"{113 \\ast R \\over 2}=1.25 \\ast \\sqrt{702119}"
"R={10 \\ast \\sqrt{702119} \\over 452} \\approx 18.5"
Comments
Leave a comment