a large cone has a height 6 cm and base diameter 18 cm. The large cone is made by placing a small cone A of height 2 cm and base diameter 6 cm on top of a frustum B.
Calculate the volume of the frustum B. Give your answer in terms of π.
Calculate the total surface area of frustum B. Give your answer in terms of π.
"Volume \\ of\\ frustum\\ of\\ cone=\\dfrac{{\\pi}h(r_1^{2}+r_2^{2}+r_1r_2)}{3}"
"r_1=9\\ cm"
"r_2=3\\ cm"
"\\ h=2\\ cm"
"where\\ r_1,r_2 \\ radius""\\ of\\ frustum\\ and\\ h_1\\ height\\ of frustum."
Now putting all the value in above formula, we get
"V=\\dfrac{{\\pi}h(r_1^{2}+r_2^{2}+r_1+r_2)}{3}=\\dfrac{{\\pi}\\times 2( 9^{2}+ 3^{2}+9\\times3)}{3}=78{\\pi}\\ cm^{3}"
"Total\\ surface \\ area \\ of frustum={\\pi}({r_1^{2}}+{r_2^{2}}+(r_1+r_2)\\times \\sqrt({{r_1-r_2})^{2}+h^{2}})=""{\\pi}\\times(9^{2}+3^{2}+9+3 +\\sqrt {(9-3)^{2}+2^{2}})"=216.64 "{\\pi}"
Comments
Leave a comment