1)
"a^2=h^2+1^2"
"b^2=h^2+4^2"
"5^2=a^2+b^2"
"5^2=1+b^2+16+b^2"
"2h^2=25-17=8"
"h^2=4"
"h=2"
so "a^2=2^2+1=5"
"a=2.236067977"
"b^2=2^2+16=20"
"b=4.472135955"
circumference
"=2.236067977+4.472135955+5=11.70820393"
2)
"BC=a, CA=b, AB=\\sqrt{a^2+b^2}"
CD is the angle bisector
let's draw square CEDF and CE=h
so,
"BE=a-h , CD=h\\sqrt{2}"
Now, ABC and DBE are similar triangles.
"\\frac{b}{a}=\\frac{h}{a-h}"
"h=\\frac{ab}{a+b}"
length of angle bisector is given by
"CD=h\\sqrt{2}"
"CD=\\frac{ab\\sqrt{2}}{a+b}"
3)
shortest sides of the rectangle are AB and DC
using trigonometric ratio in triangle ABC.
"<B=90\\degree"
now,
"cosx=\\frac{adjacent}{hypotenuse}"
"cosx=\\frac{AB}{AC}"
"cosx=\\frac{AB}{d}"
now, "p=\\frac{AB}{d}"
"AB=pd"
length of shortest side "AB=p \\times d"
4)
"a>1"
"(\\frac{1}{x}\u2265\\frac{a}{x+1}"
"\\frac{1}{x}-x+\\frac{1}{x}-1\u2265a"
"\\frac{x}{x}-x+\\frac{1}{x}-1\u2265a"
"1-x+\\frac{1}{x}-1\u2265a"
"-x+\\frac{1}{x}\u2265a"
"\\frac{1}{x}-x\u2265a"
"\\frac{1-x^2}{x}\u2265a"
5)
"cos x=p"
"\\frac{1}{secx}=p"
"sec x=\\frac{1}{p}"
"sec^2 x=(\\frac{1}{p})^2"
By identity
"sec^2x-tan^2x=1"
"tan^2x=sec^2x-1"
"=\\frac{1}{p^2}-1"
"=\\frac{1-p^2}{p^2}"
"tan^2x=\\frac{1-p^2}{p^2}"
"tanx =\\sqrt{\\frac{1-p^2}{p^2}}"
"tanx=\\frac{\\sqrt{1-p^2}}{p}"
Comments
Leave a comment