Answer to Question #182075 in Geometry for Lawrent

Question #182075

The equation of a circle is 4x^2+4y^2-12x+32y=27. Find the chord of the circle that cuts the x-axis.


1
Expert's answer
2021-05-07T11:48:18-0400

4x2+4y212x+32y=274x212x+9+4y2+32y+64=27+9+64(2x3)2+(2y+8)2=102O(3/2;4) R=10y=0(2x3)2+(20+8)2=102(2x3)2+64=100(2x3)2=362x3=62x=9x=4.52x3=62x=3x=1.5chord AB xx1x2x1=yy1y2y1A(x1;x2), B(y1;y2)x1(1.5;4.5) y1(0;1)x2[3.5;1.5)(4.5;6.5]y2[9;0)4x^2+4y^2-12x+32y=27 \\ 4x^2-12x+9+4y^2+32y+64=27+9+64 \\ (2x-3)^2+(2y+8)^2=10^2 \\ O(3/2;-4) \ R=10 \\ y=0 \\ (2x-3)^2+(2*0+8)^2=10^2 \\ (2x-3)^2+64=100 \\ (2x-3)^2=36 \\ 2x-3=6 \\ 2x=9 \\x=4.5 \\ 2x-3=-6 \\ 2x=-3 \\ x=-1.5 \\ chord \ AB \ \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1} \\ A(x_1;x_2), \ B(y_1;y_2) \\ x_1\in(-1.5;4.5) \ y_1 \in(0;1) \\ x_2 \in[-3.5;-1.5) \cup(4.5;6.5] \\ y_2\in[-9;0)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment