Question #157406
ABCD is a square and P, Q are the midpoints of BC, CD respectively. If AP = a
and AQ = b, find in terms of a and b, the directed line segments (i) AB, (ii) AD,
(iii) BD and (iv) AC.
1
Expert's answer
2021-01-25T03:31:28-0500

ABCD is a square: AB=DC,BC=AD\overrightarrow{AB}=\overrightarrow{DC}, \overrightarrow{BC}=\overrightarrow{AD}AB=DC,BC=AD\overrightarrow{AB}=\overrightarrow{DC}, \overrightarrow{BC}=\overrightarrow{AD}AB=DC,BC=AD\overrightarrow{AB}=\overrightarrow{DC}, \overrightarrow{BC}=\overrightarrow{AD}AB=DC,BC=AD\overrightarrow{AB}=\overrightarrow{DC}, \overrightarrow{BC}=\overrightarrow{AD}P,QP, Q are the midpoints of BC,CDBC, CD respectively: BP=12BC,DQ=12DC\overrightarrow{BP}=\dfrac{1}{2}\overrightarrow{BC}, \overrightarrow{DQ}=\dfrac{1}{2}\overrightarrow{DC}BP=12BC,DQ=12DC\overrightarrow{BP}=\dfrac{1}{2}\overrightarrow{BC}, \overrightarrow{DQ}=\dfrac{1}{2}\overrightarrow{DC}BP=12BC,DQ=12DC\overrightarrow{BP}=\dfrac{1}{2}\overrightarrow{BC}, \overrightarrow{DQ}=\dfrac{1}{2}\overrightarrow{DC}BP=12BC,DQ=12DC\overrightarrow{BP}=\dfrac{1}{2}\overrightarrow{BC}, \overrightarrow{DQ}=\dfrac{1}{2}\overrightarrow{DC}

AP=AB+BP=AB+12BC\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}AP=AB+BP=AB+12BC\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}AP=AB+BP=AB+12BC\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}AP=AB+BP=AB+12BC\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}AP=AB+BP=AB+12BC\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{BP}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}AQ=AD+DQ=AD+12DC\overrightarrow{AQ}=\overrightarrow{AD}+\overrightarrow{DQ}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{DC}AQ=AD+DQ=AD+12DC\overrightarrow{AQ}=\overrightarrow{AD}+\overrightarrow{DQ}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{DC}AQ=AD+DQ=AD+12DC\overrightarrow{AQ}=\overrightarrow{AD}+\overrightarrow{DQ}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{DC}AQ=AD+DQ=AD+12DC\overrightarrow{AQ}=\overrightarrow{AD}+\overrightarrow{DQ}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{DC}AQ=AD+DQ=AD+12DC\overrightarrow{AQ}=\overrightarrow{AD}+\overrightarrow{DQ}=\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{DC}

If AP=a\overrightarrow{AP}=\vec{a}AP=a\overrightarrow{AP}=\vec{a} and AQ=b\overrightarrow{AQ}=\vec{b}AQ=b\overrightarrow{AQ}=\vec{b}

AB+12AD=a\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}=\vec{a}AB+12AD=a\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}=\vec{a}AB+12AD=a\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}=\vec{a}AD+12AB=b\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}=\vec{b}AD+12AB=b\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}=\vec{b}AD+12AB=b\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}=\vec{b}



(i)



AD=b12AB\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}\overrightarrow{AB}AD=b12AB\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}\overrightarrow{AB}AD=b12AB\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}\overrightarrow{AB}AB+12(b12AB)=a\overrightarrow{AB}+\dfrac{1}{2}(\vec{b}-\dfrac{1}{2}\overrightarrow{AB})=\vec{a}AB+12(b12AB)=a\overrightarrow{AB}+\dfrac{1}{2}(\vec{b}-\dfrac{1}{2}\overrightarrow{AB})=\vec{a}AB+12(b12AB)=a\overrightarrow{AB}+\dfrac{1}{2}(\vec{b}-\dfrac{1}{2}\overrightarrow{AB})=\vec{a}AB+12(b12AB)=a\overrightarrow{AB}+\dfrac{1}{2}(\vec{b}-\dfrac{1}{2}\overrightarrow{AB})=\vec{a}AB=43a23b\overrightarrow{AB}=\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b}AB=43a23b\overrightarrow{AB}=\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b}AB=43a23b\overrightarrow{AB}=\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b}


(ii)



AD=b12(43a23b)\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AD=b12(43a23b)\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AD=b12(43a23b)\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AD=b12(43a23b)\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AD=b12(43a23b)\overrightarrow{AD}=\vec{b}-\dfrac{1}{2}(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AD=43b23a\overrightarrow{AD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}AD=43b23a\overrightarrow{AD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}AD=43b23a\overrightarrow{AD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}


(iii)



ADAB=BD\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}ADAB=BD\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}ADAB=BD\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}BD=43b23a(43a23b)\overrightarrow{BD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}-(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})BD=43b23a(43a23b)\overrightarrow{BD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}-(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})BD=43b23a(43a23b)\overrightarrow{BD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}-(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})BD=43b23a(43a23b)\overrightarrow{BD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}-(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})BD=43b23a(43a23b)\overrightarrow{BD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}-(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})BD=43b23a(43a23b)\overrightarrow{BD}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}-(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})BD=2b2a\overrightarrow{BD}=2\vec{b}-2\vec{a}BD=2b2a\overrightarrow{BD}=2\vec{b}-2\vec{a}BD=2b2a\overrightarrow{BD}=2\vec{b}-2\vec{a}


(iv)



AD+AB=AC\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}AD+AB=AC\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}AD+AB=AC\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AC}AC=43b23a+(43a23b)\overrightarrow{AC}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}+(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AC=43b23a+(43a23b)\overrightarrow{AC}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}+(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AC=43b23a+(43a23b)\overrightarrow{AC}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}+(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AC=43b23a+(43a23b)\overrightarrow{AC}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}+(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AC=43b23a+(43a23b)\overrightarrow{AC}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}+(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AC=43b23a+(43a23b)\overrightarrow{AC}=\dfrac{4}{3}\vec{b}-\dfrac{2}{3}\vec{a}+(\dfrac{4}{3}\vec{a}-\dfrac{2}{3}\vec{b})AC=23a+23b\overrightarrow{AC}=\dfrac{2}{3}\vec{a}+\dfrac{2}{3}\vec{b}AC=23a+23b\overrightarrow{AC}=\dfrac{2}{3}\vec{a}+\dfrac{2}{3}\vec{b}AC=23a+23b\overrightarrow{AC}=\dfrac{2}{3}\vec{a}+\dfrac{2}{3}\vec{b}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS