ABCD is a square: AB=DC,BC=AD
P,Q are the midpoints of BC,CD respectively: BP=21BC,DQ=21DC
AP=AB+BP=AB+21BC
AQ=AD+DQ=AD+21DC If AP=a and AQ=b
AB+21AD=a
AD+21AB=b
(i)
AD=b−21AB
AB+21(b−21AB)=a
AB=34a−32b
(ii)
AD=b−21(34a−32b)
AD=34b−32a
(iii)
AD−AB=BD
BD=34b−32a−(34a−32b)
BD=2b−2a
(iv)
AD+AB=AC
AC=34b−32a+(34a−32b)
AC=32a+32b
Comments