ABCD is a square and P, Q are the midpoints of BC, CD respectively. If AP = a
and AQ = b, find in terms of a and b, the directed line segments (i) AB, (ii) AD,
(iii) BD and (iv) AC
ABCD is a square: "\\overrightarrow{AB}=\\overrightarrow{DC}, \\overrightarrow{BC}=\\overrightarrow{AD}"
"P, Q" are the midpoints of "BC, CD" respectively: "\\overrightarrow{BP}=\\dfrac{1}{2}\\overrightarrow{BC}, \\overrightarrow{DQ}=\\dfrac{1}{2}\\overrightarrow{DC}"
"\\overrightarrow{AQ}=\\overrightarrow{AD}+\\overrightarrow{DQ}=\\overrightarrow{AD}+\\dfrac{1}{2}\\overrightarrow{DC}"
If "\\overrightarrow{AP}=\\vec{a}" and "\\overrightarrow{AQ}=\\vec{b}"
"\\overrightarrow{AD}+\\dfrac{1}{2}\\overrightarrow{AB}=\\vec{b}"
(i)
"\\overrightarrow{AB}+\\dfrac{1}{2}(\\vec{b}-\\dfrac{1}{2}\\overrightarrow{AB})=\\vec{a}"
"\\overrightarrow{AB}=\\dfrac{4}{3}\\vec{a}-\\dfrac{2}{3}\\vec{b}"
(ii)
"\\overrightarrow{AD}=\\dfrac{4}{3}\\vec{b}-\\dfrac{2}{3}\\vec{a}"
(iii)
"\\overrightarrow{BD}=\\dfrac{4}{3}\\vec{b}-\\dfrac{2}{3}\\vec{a}-(\\dfrac{4}{3}\\vec{a}-\\dfrac{2}{3}\\vec{b})"
"\\overrightarrow{BD}=2\\vec{b}-2\\vec{a}"
(iv)
"\\overrightarrow{AC}=\\dfrac{4}{3}\\vec{b}-\\dfrac{2}{3}\\vec{a}+(\\dfrac{4}{3}\\vec{a}-\\dfrac{2}{3}\\vec{b})"
"\\overrightarrow{AC}=\\dfrac{2}{3}\\vec{a}+\\dfrac{2}{3}\\vec{b}"
Comments
Leave a comment