LetABCDbeasquare.
Letequalsidesofsquare=x
GiventhatPandQaremiddlepointsofBCandCDrespectively
BC=CD=x
BP=2xandQD=2x
GiventhatAP=aandAQ=b
NowinrightangledtriangleABP
Bypythagoroustheorem
(AP)2=(AB)2+(BP)2
a2=x2+(2x)2
a2=45x2
NowinrightangledtriangleADQ
Bypythagoroustheorem
(AQ)2=(AD)2+(DQ)2
b2=x2+4x2
b2=45x2
a2=b2=45x2ora=b=25x
x=52aorx=52b
I.AB=x=52aor52b
II.AD=x=52aor52b
III.ForBD
(BD)2=(BC)2+(CD)2
=x2+x2
=2x2
=2×54a2
BD=2×52aor2×52b
IV.AC
ForAC
(AC)2=x2+x2=2x2
AC=522aor522b
Comments
Leave a comment