Answer to Question #157068 in Geometry for Kelvin Sowah

Question #157068

ABCD is a square and P, Q are the mid points of BC, CD respectively. If AP = a and AQ = b, find in terms of a and b, the directed line segments 

I. AB

II. AD

III. BD 

IV. AC


1
Expert's answer
2021-01-25T03:17:14-0500

LetABCDbeasquare.Let\:ABCD\:be\:a\:square.

Letequalsidesofsquare=xLet\:equal\:sides\:of\:square=x

GiventhatPandQaremiddlepointsofBCandCDrespectivelyGiven\:that\:P\:and\:Q\:are\:middle\:points\:of\:BC\:and\:CD\:respectively

BC=CD=xBC=CD=x

BP=x2andQD=x2BP=\frac{x}{2}\:and\:QD\:=\frac{x}{2}

GiventhatAP=aandAQ=bGiven\:that\:AP=a\:and\:AQ=b\:

NowinrightangledtriangleABPNow\:in\:right\:angled\:triangle\:ABP

BypythagoroustheoremBy\:pythagorous\:theorem

(AP)2=(AB)2+(BP)2\left(AP\right)^2=\left(AB\right)^2+\left(BP\right)^2

a2=x2+(x2)2a^2=x^2+\left(\frac{x}{2}\right)^2

a2=5x24a^2=\frac{5x^2}{4}

NowinrightangledtriangleADQNow\:in\:right\:angled\:triangle\:ADQ

BypythagoroustheoremBy\:pythagorous\:theorem

(AQ)2=(AD)2+(DQ)2\left(AQ\right)^2=\left(AD\right)^2+\left(DQ\right)^2

b2=x2+x24b^2=x^2+\frac{x^2}{4}

b2=5x24b^2=\frac{5x^2}{4}


a2=b2=5x24ora=b=5x2a^2=b^2=\frac{5x^2}{4}\:or\:a=b=\frac{\sqrt{5x}}{2}

x=2a5orx=2b5\:x=\frac{2a}{\sqrt{5}}\:or\:x=\frac{2b}{\sqrt{5}}

I.AB=x=2a5or2b5I.\:AB=x=\frac{2a}{\sqrt{5}}\:or\:\frac{2b}{\sqrt{5}}

II.AD=x=2a5or2b5II.\:AD=x=\frac{2a}{\sqrt{5}}\:or\:\frac{2b}{\sqrt{5}}

III.ForBDIII.\:For\:BD

(BD)2=(BC)2+(CD)2\left(BD\right)^2=\left(BC\right)^2+\left(CD\right)^2

=x2+x2=x^2+x^2

=2x2=2x^2

=2×4a25=2\times\:\frac{4a^2}{5}

BD=2×2a5or2×2b5BD=\sqrt{2}\times\frac{2a}{\sqrt{5}}\:or\:\sqrt{2}\times\frac{2b}{\sqrt{5}}

IV.ACIV.\:AC

ForACFor\:AC

(AC)2=x2+x2=2x2\left(AC\right)^2=x^2+x^2=2x^2

AC=22a5or22b5\:AC=\frac{2\sqrt{2a}}{\sqrt{5}}\:or\:\frac{2\sqrt{2b}}{\sqrt{5}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment