ABCD is a square and P, Q are the mid points of BC, CD respectively. If AP = a and AQ = b, find in terms of a and b, the directed line segments
I. AB
II. AD
III. BD
IV. AC
"Let\\:ABCD\\:be\\:a\\:square."
"Let\\:equal\\:sides\\:of\\:square=x"
"Given\\:that\\:P\\:and\\:Q\\:are\\:middle\\:points\\:of\\:BC\\:and\\:CD\\:respectively"
"BC=CD=x"
"BP=\\frac{x}{2}\\:and\\:QD\\:=\\frac{x}{2}"
"Given\\:that\\:AP=a\\:and\\:AQ=b\\:"
"Now\\:in\\:right\\:angled\\:triangle\\:ABP"
"By\\:pythagorous\\:theorem"
"\\left(AP\\right)^2=\\left(AB\\right)^2+\\left(BP\\right)^2"
"a^2=x^2+\\left(\\frac{x}{2}\\right)^2"
"a^2=\\frac{5x^2}{4}"
"Now\\:in\\:right\\:angled\\:triangle\\:ADQ"
"By\\:pythagorous\\:theorem"
"\\left(AQ\\right)^2=\\left(AD\\right)^2+\\left(DQ\\right)^2"
"b^2=x^2+\\frac{x^2}{4}"
"b^2=\\frac{5x^2}{4}"
"a^2=b^2=\\frac{5x^2}{4}\\:or\\:a=b=\\frac{\\sqrt{5x}}{2}"
"\\:x=\\frac{2a}{\\sqrt{5}}\\:or\\:x=\\frac{2b}{\\sqrt{5}}"
"I.\\:AB=x=\\frac{2a}{\\sqrt{5}}\\:or\\:\\frac{2b}{\\sqrt{5}}"
"II.\\:AD=x=\\frac{2a}{\\sqrt{5}}\\:or\\:\\frac{2b}{\\sqrt{5}}"
"III.\\:For\\:BD"
"\\left(BD\\right)^2=\\left(BC\\right)^2+\\left(CD\\right)^2"
"=x^2+x^2"
"=2x^2"
"=2\\times\\:\\frac{4a^2}{5}"
"BD=\\sqrt{2}\\times\\frac{2a}{\\sqrt{5}}\\:or\\:\\sqrt{2}\\times\\frac{2b}{\\sqrt{5}}"
"IV.\\:AC"
"For\\:AC"
"\\left(AC\\right)^2=x^2+x^2=2x^2"
"\\:AC=\\frac{2\\sqrt{2a}}{\\sqrt{5}}\\:or\\:\\frac{2\\sqrt{2b}}{\\sqrt{5}}"
Comments
Leave a comment