L e t A B C D b e a s q u a r e . Let\:ABCD\:be\:a\:square. L e t A BC D b e a s q u a re .
L e t e q u a l s i d e s o f s q u a r e = x Let\:equal\:sides\:of\:square=x L e t e q u a l s i d es o f s q u a re = x
G i v e n t h a t P a n d Q a r e m i d d l e p o i n t s o f B C a n d C D r e s p e c t i v e l y Given\:that\:P\:and\:Q\:are\:middle\:points\:of\:BC\:and\:CD\:respectively G i v e n t ha t P an d Q a re mi dd l e p o in t s o f BC an d C D res p ec t i v e l y
B C = C D = x BC=CD=x BC = C D = x
B P = x 2 a n d Q D = x 2 BP=\frac{x}{2}\:and\:QD\:=\frac{x}{2} BP = 2 x an d Q D = 2 x
G i v e n t h a t A P = a a n d A Q = b Given\:that\:AP=a\:and\:AQ=b\: G i v e n t ha t A P = a an d A Q = b
N o w i n r i g h t a n g l e d t r i a n g l e A B P Now\:in\:right\:angled\:triangle\:ABP N o w in r i g h t an g l e d t r ian g l e A BP
B y p y t h a g o r o u s t h e o r e m By\:pythagorous\:theorem B y p y t ha g oro u s t h eore m
( A P ) 2 = ( A B ) 2 + ( B P ) 2 \left(AP\right)^2=\left(AB\right)^2+\left(BP\right)^2 ( A P ) 2 = ( A B ) 2 + ( BP ) 2
a 2 = x 2 + ( x 2 ) 2 a^2=x^2+\left(\frac{x}{2}\right)^2 a 2 = x 2 + ( 2 x ) 2
a 2 = 5 x 2 4 a^2=\frac{5x^2}{4} a 2 = 4 5 x 2
N o w i n r i g h t a n g l e d t r i a n g l e A D Q Now\:in\:right\:angled\:triangle\:ADQ N o w in r i g h t an g l e d t r ian g l e A D Q
B y p y t h a g o r o u s t h e o r e m By\:pythagorous\:theorem B y p y t ha g oro u s t h eore m
( A Q ) 2 = ( A D ) 2 + ( D Q ) 2 \left(AQ\right)^2=\left(AD\right)^2+\left(DQ\right)^2 ( A Q ) 2 = ( A D ) 2 + ( D Q ) 2
b 2 = x 2 + x 2 4 b^2=x^2+\frac{x^2}{4} b 2 = x 2 + 4 x 2
b 2 = 5 x 2 4 b^2=\frac{5x^2}{4} b 2 = 4 5 x 2
a 2 = b 2 = 5 x 2 4 o r a = b = 5 x 2 a^2=b^2=\frac{5x^2}{4}\:or\:a=b=\frac{\sqrt{5x}}{2} a 2 = b 2 = 4 5 x 2 or a = b = 2 5 x
x = 2 a 5 o r x = 2 b 5 \:x=\frac{2a}{\sqrt{5}}\:or\:x=\frac{2b}{\sqrt{5}} x = 5 2 a or x = 5 2 b
I . A B = x = 2 a 5 o r 2 b 5 I.\:AB=x=\frac{2a}{\sqrt{5}}\:or\:\frac{2b}{\sqrt{5}} I . A B = x = 5 2 a or 5 2 b
I I . A D = x = 2 a 5 o r 2 b 5 II.\:AD=x=\frac{2a}{\sqrt{5}}\:or\:\frac{2b}{\sqrt{5}} II . A D = x = 5 2 a or 5 2 b
I I I . F o r B D III.\:For\:BD III . F or B D
( B D ) 2 = ( B C ) 2 + ( C D ) 2 \left(BD\right)^2=\left(BC\right)^2+\left(CD\right)^2 ( B D ) 2 = ( BC ) 2 + ( C D ) 2
= x 2 + x 2 =x^2+x^2 = x 2 + x 2
= 2 x 2 =2x^2 = 2 x 2
= 2 × 4 a 2 5 =2\times\:\frac{4a^2}{5} = 2 × 5 4 a 2
B D = 2 × 2 a 5 o r 2 × 2 b 5 BD=\sqrt{2}\times\frac{2a}{\sqrt{5}}\:or\:\sqrt{2}\times\frac{2b}{\sqrt{5}} B D = 2 × 5 2 a or 2 × 5 2 b
I V . A C IV.\:AC I V . A C
F o r A C For\:AC F or A C
( A C ) 2 = x 2 + x 2 = 2 x 2 \left(AC\right)^2=x^2+x^2=2x^2 ( A C ) 2 = x 2 + x 2 = 2 x 2
A C = 2 2 a 5 o r 2 2 b 5 \:AC=\frac{2\sqrt{2a}}{\sqrt{5}}\:or\:\frac{2\sqrt{2b}}{\sqrt{5}} A C = 5 2 2 a or 5 2 2 b
Comments