For a regular polygon, let n be the number of sides and α be the interior angle.
The sum of interior angles for a regular polygon is nα .
Also we can use another formula for calculating the sum of interior angles: 180∘(n−2) .
180∘(n−2)=nα180∘n−360∘=nαn(180∘−α)=360∘n=180∘−α360∘
1) α=128 4/7∘
n=180∘−128 4/7∘360∘=51 3/7∘360∘=7
2) α=144∘
n=180∘−144∘360∘=36∘360∘=10
3) α=160∘
n=180∘−160∘360∘=20∘360∘=18
Answer: 7 sides; 10 sides; 18 sides.
Comments
Leave a comment