Question #154091

Find the side of the regular octagon inscribed in a circle of radius 50 mm. Solve in two ways. Also, find the value of each interior and exterior angles of the regular polygon.


1
Expert's answer
2021-01-06T19:55:36-0500
α=360°8=45°\alpha=\dfrac{360\degree}{8}=45\degree


Consider the isosceles triangle A1OA2.A_1OA_2. The Law of Cosines


a2=R2+R22RRcosαa^2=R^2+R^2-2R\cdot R\cos\alpha

a=R22a=R\sqrt{2-\sqrt{2}}

a=5022 mma=50\sqrt{2-\sqrt{2}}\ mm

Let A1(5022,5022),A2(50,0).A_1(\dfrac{50\sqrt{2}}{2}, \dfrac{50\sqrt{2}}{2}), A_2(50,0). Then


a=A1A2=(505022)2+(05022)2a=A_1A_2=\sqrt{(50-\dfrac{50\sqrt{2}}{2})^2+(0-\dfrac{50\sqrt{2}}{2})^2}

=5012+12+12=5022 (mm)=50\sqrt{1-\sqrt{2}+\dfrac{1}{2}+\dfrac{1}{2}}=50\sqrt{2-\sqrt{2}}\ (mm)

a=5022 mma=50\sqrt{2-\sqrt{2}}\ mm



β=180°(81)8=157.5°\beta=\dfrac{180\degree(8-1)}{8}=157.5\degree




interior angle=157.5°interior\ angle=157.5\degree

The interior and exterior angle add up to 180°


exterior angle=180°β=180°157.5°exterior\ angle=180\degree-\beta=180\degree-157.5\degree

exterior angle=22.5°exterior\ angle=22.5\degree



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS