1.The sum of the perimeters of two squares is 50 cm and the sum of the areas is 93.25 cm^2. Find the side length of each square.
2. The sum of the circumferences of two circles is 36π cm and the sum of the areas is 170π cm^2. Find the radius of each circle.
3. A cuboid has sides of length 5 cm, x cm and y cm. Given x+y=20.5 and the volume of the cuboid is 360 cm^3, find the value of x and the value of y.
1. Let "x" be the length of the side of the first square and "y" be the length of the side of the second square. Then
"\\begin{alignedat}{2}\n 4x+ 4y = 50 \\\\\n x^2+y^2 = 93.25\n\\end{alignedat}""\\begin{alignedat}{2}\n y = 12.5-x \\\\\n x^2+(12.5-x)^2 = 93.25\n\\end{alignedat}"
"2x^2-25x+63=0, 0<x<12.5"
"x=\\dfrac{25\\pm\\sqrt{25^2-4(2)(63)}}{2(2)}=\\dfrac{25\\pm11}{4}"
"x_1=\\dfrac{25-11}{4}=3.5, y_1=12.5-3.5=9"
"x_2=\\dfrac{25+11}{4}=9, y_2=12.5-9=3.5"
3.5 cm and 9 cm
2. Let "x" be the radius of the first circle and "y" be the radius of the second circle. Then
"\\begin{alignedat}{2}\n 2\\pi x+ 2\\pi y = 36 \\pi \\\\\n \\pi x^2+\\pi y^2 = 170\\pi\n\\end{alignedat}""\\begin{alignedat}{2}\n y = 18-x \\\\\n x^2+(18-x)^2 = 170\n\\end{alignedat}"
"2x^2-36x+154=0, 0<x<18"
"x^2-18x+77=0"
"x=\\dfrac{18\\pm\\sqrt{18^2-4(1)(77)}}{2(1)}=9\\pm2"
"x_1=9-2=7, y_1=18-7=11"
"x_2=9+2=11, y_2=18-11=7"
7 cm and 11 cm
3. The volume "V" of a cuboid is
Then
"\\begin{alignedat}{2}\n y = 20.5-x \\\\\n x(20.5-x) =72\n\\end{alignedat}"
"x^2-20.5x+72=0, 0<x<20.5"
"x=\\dfrac{20.5\\pm\\sqrt{20.5^2-4(1)(72)}}{2(1)}=10.25\\pm5.75"
"x_1=10.25-5.75=4.5, y_1=20.5-4.5=16"
"x_2=10.25+5.75=16, y_2=20.5-16=4.5"
4.5 cm and 16 cm or 16 cm and 4.5 cm
Comments
Leave a comment