1. Let "x" be the length of the side of the first square and "y" be the length of the side of the second square. Then
"\\begin{alignedat}{2}\n 4x+ 4y = 50 \\\\\n x^2+y^2 = 93.25\n\\end{alignedat}""\\begin{alignedat}{2}\n y = 12.5-x \\\\\n x^2+(12.5-x)^2 = 93.25\n\\end{alignedat}"
"2x^2-25x+63=0, 0<x<12.5"
"x=\\dfrac{25\\pm\\sqrt{25^2-4(2)(63)}}{2(2)}=\\dfrac{25\\pm11}{4}"
"x_1=\\dfrac{25-11}{4}=3.5, y_1=12.5-3.5=9"
"x_2=\\dfrac{25+11}{4}=9, y_2=12.5-9=3.5"
3.5 cm and 9 cm
2. Let "x" be the radius of the first circle and "y" be the radius of the second circle. Then
"\\begin{alignedat}{2}\n 2\\pi x+ 2\\pi y = 36 \\pi \\\\\n \\pi x^2+\\pi y^2 = 170\\pi\n\\end{alignedat}""\\begin{alignedat}{2}\n y = 18-x \\\\\n x^2+(18-x)^2 = 170\n\\end{alignedat}"
"2x^2-36x+154=0, 0<x<18"
"x^2-18x+77=0"
"x=\\dfrac{18\\pm\\sqrt{18^2-4(1)(77)}}{2(1)}=9\\pm2"
"x_1=9-2=7, y_1=18-7=11"
"x_2=9+2=11, y_2=18-11=7"
7 cm and 11 cm
3. The volume "V" of a cuboid is
Then
"\\begin{alignedat}{2}\n x+ y = 20.5 \\\\\n 5xy = 360\n\\end{alignedat}"
"\\begin{alignedat}{2}\n y = 20.5-x \\\\\n x(20.5-x) =72\n\\end{alignedat}"
"x^2-20.5x+72=0, 0<x<20.5"
"x=\\dfrac{20.5\\pm\\sqrt{20.5^2-4(1)(72)}}{2(1)}=10.25\\pm5.75"
"x_1=10.25-5.75=4.5, y_1=20.5-4.5=16"
"x_2=10.25+5.75=16, y_2=20.5-16=4.5"
4.5 cm and 16 cm or 16 cm and 4.5 cm
Comments
Leave a comment