Consider frustrum of a right circular cone
"L=\\sqrt{(r_2-r_1)^2+h^2}"
Given
"r_1=\\dfrac{3}{2}=1.5(m), r_2=\\dfrac{6}{2}=3(m), h=50\\ m"
"L=\\sqrt{(3-1.5)^2+50^2}=\\sqrt{2502.25}\\approx50.022(m)"
The slant height of the opening is approximately 50.022 m.
9. The lateral area of the frustum of a right circular cone is
"A_L=\\dfrac{1}{2}(2\\pi (3)+2\\pi (1.5))\\sqrt{2502.25}\\approx707.176362(m^2)"
the lateral surface area of the opening is approximately 707.176362 m2.
10.
For any Frustum, the volume is
The volume of the frustrum of the cone
"=\\dfrac{\\pi}{3}( r_1^2+ r_2^2+r_1r_2)h"
"V_c=\\dfrac{\\pi}{3}((1.5)^2+(3)^2+1.5(3))(50)"
"\\approx824.668071567(m^3)"
"V_p=\\dfrac{1}{3}((4.5)^2+(10)^2+4.5(10))(50)"
"\\approx2754.666666667(m^3)"
The volume of the stone is
"\\approx2754.666666667-824.668071567"
"\\approx1930\\ (m^3)"
The volume of the stone is 1930 m3.
Comments
Leave a comment