Using the alternate segment theorem:
"\\angle B_1KB = \\cfrac{1}{2} \\frown{KB} = \\angle KAB \\\\\n\\angle A_1KA = \\cfrac{1}{2}\\frown{AK} = \\angle KBA \\\\"
"\\triangle KAM \\sim \\triangle BKB_1 \\Rightarrow \\cfrac{AK}{BK} = \\cfrac{KM}{B_1B}\\\\\n\\triangle KBH \\sim \\triangle AKC \\Rightarrow \\cfrac{BK}{AK} = \\cfrac{KM}{AA_1}"
So we have
"\\cfrac{KM}{BB_1}=\\cfrac{AA_1}{KM} \\Rightarrow KM = \\sqrt{AA_1 *BB_1}"
"KM = \\sqrt{7 *11} =\\sqrt{77}"
"BK = \\cfrac{AK*B_1B}{KM} = \\cfrac{13*11}{\\sqrt{77}}=\\cfrac{13\\sqrt{11}}{\\sqrt{7}}"
By Pythagorean Theorem:
"BM = \\sqrt{KB^2 - KM^2} = \\sqrt{\\cfrac{169*11}{7} - 77}= \\sqrt{\\cfrac{1320}{7}}= 2\\sqrt{\\cfrac{330}{7}}"
"AM = \\sqrt{169-77} = 2\\sqrt{23}"
And finaly:
"S = \\cfrac{\\sqrt{77}}{2}(2\\sqrt{23} + \\cfrac{2\\sqrt{330}}{\\sqrt{7}}) = \\sqrt{11*167} + \\sqrt{11*1320} = \\sqrt{1771}+\\sqrt{14520} = 162"
Comments
Leave a comment