Question #145645
Find the volume of a right circular cone obtained from a sector of a circle in which the radius is 26 cm and the central angle is 138.5 ° ? Round your final answer to 1 decimal place.
1
Expert's answer
2020-11-23T18:18:06-0500

Slant height of cone=Radius of circle which a sector is cut from.l=26cmCircumference of base of cone=length of arc2πR=138.5°360°×2π×26R=3601360cmV=13πR2l2R2=π3(3601360)2×262(3601360)2=2514.5cm3(1d.p.)\displaystyle \textsf{Slant height of cone} = \\ \textsf{Radius of circle which a sector is cut from.}\\ l = 26cm\\ \textsf{Circumference of base of cone} = \textsf{length of arc}\\ 2\pi R = \frac{138.5\degree}{360\degree} \times 2\pi \times 26\\ R = \frac{3601}{360}\,cm\\ \begin{aligned} V &= \frac{1}{3}\pi R^2 \sqrt{l^2 - R^2} \\&= \frac{\pi}{3}\left(\frac{3601}{360}\right)^2 \times \sqrt{26^2 - \left(\frac{3601}{360}\right)^2} \\&= 2514.5\,cm^3 \,(1 \,\textsf{d.p.}) \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS