Let "F\\in l, AF\\perp l; T\\in l, BT\\perp l; N\\in BT, AN\\perp BT;" O is the center of the circle ω.
"AF=7, AK=13, BT=11."
"\\triangle AKF: KF=\\sqrt{AK^2-AF^2}=\\sqrt{13^2-7^2}=\\sqrt{120}\\approx 10.95."
"\\angle AKF=arcsin\\frac{AF}{AK}=arcsin\\frac{7}{13}."
"\\triangle AOK: \\angle AOK=2\\angle AKF=2arcsin\\frac{7}{13}."
"OB=OA=OK=\\frac{AK}{2sin\\frac{\\angle AOK}{2}}=\\frac{13}{2\\cdot \\frac{7}{13}}=\\frac{169}{14}."
"\\triangle KBT: \\angle BKT=arcsin\\frac{BT}{BK}=arcsin\\frac{11}{BK}."
"\\triangle OBK: \\angle BOK=2\\angle BKT=2arcsin\\frac{11}{BK}."
"BK=2OKsin\\frac{\\angle BOK}{2}=2\\cdot \\frac{ 169}{14}\\cdot \\frac{ 11}{BK},"
"BK=\\sqrt{\\frac{169\\cdot11}{7}}\\approx16.30."
"\\triangle KBT: TK=\\sqrt{BK^2-BT^2}=\\sqrt{16.3^2-11^2}\\approx 12.03."
"AN=TF=TK+KF=12.03+10.95=22.98."
"AF=NT=7, BN=BT-NT=11-7=4."
"\\triangle ANB: AB=\\sqrt{AN^2+BN^2}=\\sqrt{22.98^2+4^2}\\approx 23.33."
And by the Heron's formula, "S=102.35\\approx 102."
Comments
Leave a comment