The Coordinates of the Centroid O(x,y) of a triangle with Vertices A(-1,2), B(4,-4) and C(1,2).
D, E, and F are Mid-point of AB, BC, CA
So,
"D=\\{(4-1)\\div 2, (2-4)\\div2 \\}=(3\/2,-1)"
"E=\\{(4+1)\\div 2, (-4+2)\\div2 \\}=(5\/2,-1)"
"F=\\{(-1+1)\\div 2, (2+2)\\div2 \\}=(0,2)"
The Centroid of Triangle "O=\\{(x_{1}+x_{2}+x_{3})\\div3, (y_{1}+y_{2}+y_{3})\\div3\\}"
"O=\\{(-1+4+1)\\div3, (2-4+2)\\div3\\}"
"O=(4\/3,0)"
let the required ratio k:1
O(4/3,0) divides the interval CD in the ratio k:1
x=4/3 then
x={(1)(1)+(3/2)(k) }/(k+1)
4/3=(1+3k/2)/(k+1)
4k+4=3(2+3k)/2
8k+8=6+9k
K=2 So ratio is 2:1
Now
y=0 then y=(2--1K)/(k+1)
0=2-k
k=2 So ratio is 2:1
O(4/3,0) divides the interval BF in the ratio k:1
x=4/3 then
x={(1)(4)+(k)(0)}/(k+1)
4/3=4/k+1
4K+4=12
K=2 so ratio is 2:1
Now
y=0 then
y=(-4+2k)/(k+1)
0=-4+2k
k=2 So ratio is 2:1
O(4/3,0) divides the interval AE in ratio k:1
x=4/3 then
x={(1)(-1)+(5/2)(k)}/(k+1)
4/3=(-1+5k/2)/(k+1)
4k+4=3(-2+5k)/2
8k+8=-6+15k
7k=14
k=2 so ratio is 2:1
Now
y=0 then
y=(2-1k)/(k+1)
0=2-1k
k=2 So ratio is 2:1
Hence
The Centroid divides each Median in the Ratio 2:1
Comments
Dear Ruby, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
It is so helpful. Thank you
Leave a comment