Q2. The force of interest at any time t, (measured in years) is given by
0.07—0.005t ,0 ≤ t < 5 0.06—0.003t, 5≤ t < 10
δ(t) =
(a) Calculate the accumulated amount at time t = 15 of $100 invested at time
0.03, t > 10 t = 0.
0.07−0.005t, 0≤t<5 0.06 − 0.003t, 5 ≤ t < 10
δ(t) =
What is the total accumulated in value at any time t (> 0) of investments of $100 at
0.03, t ≥ 10 times 0, 4 and 6?
"a)100 \\times A(0,5) \\times A(5,10) \\times A(10,15)\n\\\\A=100\\times e^{\\int_0^5(0.07-0.005t)dt} \\times e^{\\int_5^{10}(0.06-0.003t)dt} \\times e^{0.03 \\times 5}\\\\\n=100 \\times e^{0.07t-\\frac{0.005t^2}{2}|_0^5} \\times e^{0.06t-\\frac{0.003t^2}{2}|_5^{10}} \\times e^{0.15}\\\\\n=100 \\times e^{0.35-0.0625} \\times e^{0.45-0.2925} \\times e^{0.15}\\\\\n=100 \\times e^{0.2875} \\times e^{0.1575} \\times e^{0.15}\\\\\n=100 \\times 1.3331 \\times 1.1706 \\times 1.1618\\\\\n=\\$ 181.30"
at time t=0
"A=100 \\times e^{0.07 \\times 5} \\times e^{0.06 \\times 5} \\times e^{0.073\\times 5}\\\\\nA=100 \\times 1.4191 \\times 1.3499 \\times 1.1618\\\\\nA=\\$ 222.56"
at time t=4
"=100\\times e^{\\int_4^5(0.07-0.005t)dt} \\times e^{\\int_5^{10}(0.06-0.003t)dt} \\times e^{0.03 \\times 5}\\\\\n=100 \\times e^{0.07t-\\frac{0.005t^2}{2}|_4^5} \\times e^{0.06t-\\frac{0.003t^2}{2}|_5^{10}} \\times e^{0.15}\\\\\n=100 \\times e^{0.2875-0.24} \\times e^{0.45-0.2925} \\times e^{0.15}\\\\\n=100 \\times e^{0.0475} \\times e^{0.1575} \\times e^{0.15}\\\\\n=100 \\times 1.0486 \\times 1.1706 \\times 1.1618\\\\\n=\\$ 142.61"
at time 6
"=100 \\times e^{\\int_6^{10}(0.06-0.003t)dt} \\times e^{0.03 \\times 5}\\\\\n=100 \\times e^{0.06t-\\frac{0.003t^2}{2}|_6^{10}} \\times e^{0.15}\\\\\n=100 \\times e^{0.45-0.27} \\times e^{0.15}\\\\\n=100 \\times e^{0.18} \\times e^{0.15}\\\\\n=100 \\times 1.1972 \\times 1.1618\\\\\n=\\$ 139.09\\\\"
Comments
Leave a comment