A sum of 45000 invested will provide payments of 500 each at the end of every 2 months for 7 years find the under lying rate of interest compounded semi annualy
PV of payments "=500\\times 3\\times \\dfrac{1-(\\dfrac1{(1+\\frac r2)^{7\\times 2}})}{\\frac r2}"
Invested sum = 45000
So, "45000=15000\\times \\dfrac{1-(\\dfrac1{(1+\\frac r2)^{7\\times 2}})}{\\frac r2}"
"\\Rightarrow \\dfrac {3r}2=1-\\dfrac1{(1+\\frac r2)^{14}}\n\\\\ \\Rightarrow \\frac r2=0.326984\n\\\\ \\Rightarrow r=0.653968\n\\\\\\Rightarrow r=65.3968\\%"
Comments
Leave a comment