A sum of 45000 invested will provide payments of 500 each at the end of every 2 months for 7 years find the under lying rate of interest compounded semi annualy
PV of payments =500×3×1−(1(1+r2)7×2)r2=500\times 3\times \dfrac{1-(\dfrac1{(1+\frac r2)^{7\times 2}})}{\frac r2}=500×3×2r1−((1+2r)7×21)
Invested sum = 45000
So, 45000=15000×1−(1(1+r2)7×2)r245000=15000\times \dfrac{1-(\dfrac1{(1+\frac r2)^{7\times 2}})}{\frac r2}45000=15000×2r1−((1+2r)7×21)
⇒3r2=1−1(1+r2)14⇒r2=0.326984⇒r=0.653968⇒r=65.3968%\Rightarrow \dfrac {3r}2=1-\dfrac1{(1+\frac r2)^{14}} \\ \Rightarrow \frac r2=0.326984 \\ \Rightarrow r=0.653968 \\\Rightarrow r=65.3968\%⇒23r=1−(1+2r)141⇒2r=0.326984⇒r=0.653968⇒r=65.3968%
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment