The force of interest at any time t, (measured in years) is given by
0.07−0.005t, 0≤t<5 0.06 − 0.003t, 5 ≤ t < 10
δ(t) =
What is the total accumulated in value at any time t (> 0) of investments of $100 at
0.03, t ≥ 10 times 0, 4 and 6?
a)100×A(0,5)×A(5,10)×A(10,15)A=100×e∫05(0.07−0.005t)dt×e∫510(0.06−0.003t)dt×e0.03×5=100×e0.07t−0.005t22∣05×e0.06t−0.003t22∣510×e0.15=100×e0.35−0.0625×e0.45−0.2925×e0.15=100×e0.2875×e0.1575×e0.15=100×1.3331×1.1706×1.1618=$181.30at t=0A=100×e0.07×5×e0.06×5×e0.073×5A=100×1.4191×1.3499×1.1618A=$222.56at t=4=100×e∫45(0.07−0.005t)dt×e∫510(0.06−0.003t)dt×e0.03×5=100×e0.07t−0.005t22∣45×e0.06t−0.003t22∣510×e0.15=100×e0.2875−0.24×e0.45−0.2925×e0.15=100×e0.0475×e0.1575×e0.15=100×1.0486×1.1706×1.1618=$142.61at t=6=100×e∫610(0.06−0.003t)dt×e0.03×5=100×e0.06t−0.003t22∣610×e0.15=100×e0.45−0.27×e0.15=100×e0.18×e0.15=100×1.1972×1.1618=$139.09a)100 \times A(0,5) \times A(5,10) \times A(10,15) \\A=100\times e^{\int_0^5(0.07-0.005t)dt} \times e^{\int_5^{10}(0.06-0.003t)dt} \times e^{0.03 \times 5}\\ =100 \times e^{0.07t-\frac{0.005t^2}{2}|_0^5} \times e^{0.06t-\frac{0.003t^2}{2}|_5^{10}} \times e^{0.15}\\ =100 \times e^{0.35-0.0625} \times e^{0.45-0.2925} \times e^{0.15}\\ =100 \times e^{0.2875} \times e^{0.1575} \times e^{0.15}\\ =100 \times 1.3331 \times 1.1706 \times 1.1618\\ =\$ 181.30\\ at~t=0\\ A=100 \times e^{0.07 \times 5} \times e^{0.06 \times 5} \times e^{0.073\times 5}\\ A=100 \times 1.4191 \times 1.3499 \times 1.1618\\ A=\$ 222.56\\ at~t=4\\ =100\times e^{\int_4^5(0.07-0.005t)dt} \times e^{\int_5^{10}(0.06-0.003t)dt} \times e^{0.03 \times 5}\\ =100 \times e^{0.07t-\frac{0.005t^2}{2}|_4^5} \times e^{0.06t-\frac{0.003t^2}{2}|_5^{10}} \times e^{0.15}\\ =100 \times e^{0.2875-0.24} \times e^{0.45-0.2925} \times e^{0.15}\\ =100 \times e^{0.0475} \times e^{0.1575} \times e^{0.15}\\ =100 \times 1.0486 \times 1.1706 \times 1.1618\\ =\$ 142.61\\ at~t=6\\ =100 \times e^{\int_6^{10}(0.06-0.003t)dt} \times e^{0.03 \times 5}\\ =100 \times e^{0.06t-\frac{0.003t^2}{2}|_6^{10}} \times e^{0.15}\\ =100 \times e^{0.45-0.27} \times e^{0.15}\\ =100 \times e^{0.18} \times e^{0.15}\\ =100 \times 1.1972 \times 1.1618\\ =\$ 139.09\\a)100×A(0,5)×A(5,10)×A(10,15)A=100×e∫05(0.07−0.005t)dt×e∫510(0.06−0.003t)dt×e0.03×5=100×e0.07t−20.005t2∣05×e0.06t−20.003t2∣510×e0.15=100×e0.35−0.0625×e0.45−0.2925×e0.15=100×e0.2875×e0.1575×e0.15=100×1.3331×1.1706×1.1618=$181.30at t=0A=100×e0.07×5×e0.06×5×e0.073×5A=100×1.4191×1.3499×1.1618A=$222.56at t=4=100×e∫45(0.07−0.005t)dt×e∫510(0.06−0.003t)dt×e0.03×5=100×e0.07t−20.005t2∣45×e0.06t−20.003t2∣510×e0.15=100×e0.2875−0.24×e0.45−0.2925×e0.15=100×e0.0475×e0.1575×e0.15=100×1.0486×1.1706×1.1618=$142.61at t=6=100×e∫610(0.06−0.003t)dt×e0.03×5=100×e0.06t−20.003t2∣610×e0.15=100×e0.45−0.27×e0.15=100×e0.18×e0.15=100×1.1972×1.1618=$139.09
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments