Calculating the number of months required (n):
"FV\\space of\\space annuity=P\\times[\\frac{(1+r)^n-1}{r}]"
"1,000,000=3,745.35\\times[(\\frac{1+\\frac{0.145}{12})^n-1}{\\frac{0.145}{12}}]"
"\\frac{1,000,000}{3,745.35}\\times0.012083=(1.012083)^n-1"
"3.226223+1==(1.012083)^n" ( now flip the equation and take log both sides)
"n\\times log(1.012083)=log (4.226223)"
"n=\\frac{log(4.226223)}{log(1.012083)}"
"n=119.99"
Where:
the future value of annuity = 1,000,000
the monthly payment (P) = 3,745.35
the monthly inteest rate "=\\frac{0.145}{12}"
Thus, the given annuity will take 119.99 months, i.e., 120 months rounded off, or 10 years to achieve 1,000,000.00.
10 years
Comments
Leave a comment