Compound interest
A = P ( 1 + r n ) n t A = P(1 +\frac{ r}{n})^{nt} A = P ( 1 + n r ) n t
A=final amount
P=initial principal balance
r=interest rate
n=number of times interest applied per time period
t=number of time periods elapsed
Amount=Interest+Amount
= 150 + 500 = 650 =150+500=650 = 150 + 500 = 650
A = P ( 1 + r n ) n t A = P(1 +\frac{ r}{n})^{nt} A = P ( 1 + n r ) n t
650 = 500 ( 1 + r 1 ) 1 × 6 650 = 500(1 +\frac{ r}{1})^{1×6} 650 = 500 ( 1 + 1 r ) 1 × 6
1.3 = ( 1 + r ) 6 1.3=(1+r)^6 1.3 = ( 1 + r ) 6
1.3 6 = 1 + r = 1.0446750 \sqrt[6]{1.3}=1+r\\=1.0446750 6 1.3 = 1 + r = 1.0446750
1.0446750 − 1 = 0.0446750 4.46750 % 1.0446750-1=0.0446750\\4.46750\% 1.0446750 − 1 = 0.0446750 4.46750%
Simple interest
I = P × I × T I=P×I×T I = P × I × T
P = Principal Amount I = Interest Amount r = Rate of Interest per year in 150 = 500 × I × 6 150 = 3000 I I = 0.05 0.05 × 100 = 5 % 150=500×I×6\\150=3000I\\I=0.05\\0.05×100=5\% 150 = 500 × I × 6 150 = 3000 I I = 0.05 0.05 × 100 = 5%
Comments