Assume that the annual rate is "i". Then we have:
"500(\\frac{1}{(1+i)^5}+\\frac{1}{(1+i)^6}+..+\\frac{1}{(1+i)^{20}})=3000" .
After simplifications we get:
"\\frac{500}{(1+i)^5}\\frac{(1-\\frac{1}{(1+i)^{16}})}{1-\\frac{1}{(1+i)}}=3000"
From it we receive:
"{(\\frac{1}{(1+i)^5}-\\frac{1}{(1+i)^{21}})}=6(1-\\frac{1}{(1+i)})"
Solving the latter numerically, we obtain:
"\\frac{1}{(1+i)}=0.91903"
From the latter we obtain i:
"i\\approx0.0881."
Answer: 0.0881(the values is rounded to 4 decimal places)
Comments
Leave a comment