Let X be a non-empty set, and let R be an equivalence relation on X. Let C be the set of all equivalence classes of R. So C={A⊆X such that A=[x] for some x ∈ X}.
Now, define f : X → C by the rule f(x) = [x] for all x ∈ X.
Prove that if x ∈ X, then there is one and only one equivalence class which contains x.
Suppose X = {1, 2, 3, 4, 5} and that R is an equivalence relation for which 1 R 3, 2 R 4 but 1 R̸ 2,1 R̸ 5,and 2 R̸ 5.
Write down the equivalence classes of R and draw a diagram to represent the function f.
The answer to the question is available in the PDF file https://www.assignmentexpert.com/https://www.assignmentexpert.com/homework-answers/mathematics-answer-76317.pdf
Numbers and figures are an essential part of our world, necessary for almost everything we do every day. As important…
APPROVED BY CLIENTS
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments
Leave a comment