Solve the recurrence relation of an=3an-3an-2-an-3 n>=3 a0=1 a1=-2 a2=-1
"a_n-3a_n+3a_{n-2}+a_{n-3}=0"
"-2a_n+3a_{n-2}+a_{n-3}=0"
Characteristics equalation
"-2x^3+3x+1=0"
"Q=(a^2-3b)\/9=0.5"
"R=(2a^3-9ab+27c)\/54=-0.25"
"S=Q^3-R^2=0.06" >0
"\\phi=1\/3 arccos(R\/\\sqrt{Q^3})"
"x_1=-2\\sqrt{Q} cos(\\phi)-a\/3=-1"
"x_2=-2\\sqrt{Q} cos(\\phi+2\/3\\pi)-a\/3=1.37"
"x_3=-2\\sqrt{Q} cos(\\phi-2\/3\\pi)-a\/3=-0.37"
"a_n=a(-1)^n+(1.37)^nb+(-0.37)^nc"
"a_0=a+b+c=1"
"a_1=-a+1.37b-0.37c=-2"
"a_2=a+1.8769b+0.1369c=-1"
"a_0+a_1=2.37b+0.63c=-1"
"a_1+a_2=3.2469b-0.2331c=-3"
"b=(-1-0.63c)\/2.37"
"3.2469(-1-0.63c)-0.2331c=-3"
"-3.2469-2.045547c-0.2431c=-3"
"-2.288647c=0.2469"
"c=-0.0108"
"b=-0.419"
"a=1-b-c=1+0.0108+0.419=1.43"
"a_n=1.43(-1)^n-0.419(1.37)^n-0.0108(-0.37)^n"
Comments
Leave a comment