Answer to Question #324933 in Discrete Mathematics for Ashi

Question #324933
Solve the recurrence relation of an=3an-3an-2-an-3 n>=3 a0=1 a1=-2 a2=-1
1
Expert's answer
2022-04-07T13:25:30-0400

an3an+3an2+an3=0a_n-3a_n+3a_{n-2}+a_{n-3}=0

2an+3an2+an3=0-2a_n+3a_{n-2}+a_{n-3}=0

Characteristics equalation

2x3+3x+1=0-2x^3+3x+1=0

Q=(a23b)/9=0.5Q=(a^2-3b)/9=0.5

R=(2a39ab+27c)/54=0.25R=(2a^3-9ab+27c)/54=-0.25

S=Q3R2=0.06S=Q^3-R^2=0.06 >0

ϕ=1/3arccos(R/Q3)\phi=1/3 arccos(R/\sqrt{Q^3})

x1=2Qcos(ϕ)a/3=1x_1=-2\sqrt{Q} cos(\phi)-a/3=-1

x2=2Qcos(ϕ+2/3π)a/3=1.37x_2=-2\sqrt{Q} cos(\phi+2/3\pi)-a/3=1.37


x3=2Qcos(ϕ2/3π)a/3=0.37x_3=-2\sqrt{Q} cos(\phi-2/3\pi)-a/3=-0.37

an=a(1)n+(1.37)nb+(0.37)nca_n=a(-1)^n+(1.37)^nb+(-0.37)^nc

a0=a+b+c=1a_0=a+b+c=1

a1=a+1.37b0.37c=2a_1=-a+1.37b-0.37c=-2

a2=a+1.8769b+0.1369c=1a_2=a+1.8769b+0.1369c=-1

a0+a1=2.37b+0.63c=1a_0+a_1=2.37b+0.63c=-1

a1+a2=3.2469b0.2331c=3a_1+a_2=3.2469b-0.2331c=-3

b=(10.63c)/2.37b=(-1-0.63c)/2.37

3.2469(10.63c)0.2331c=33.2469(-1-0.63c)-0.2331c=-3

3.24692.045547c0.2431c=3-3.2469-2.045547c-0.2431c=-3

2.288647c=0.2469-2.288647c=0.2469

c=0.0108c=-0.0108

b=0.419b=-0.419

a=1bc=1+0.0108+0.419=1.43a=1-b-c=1+0.0108+0.419=1.43

an=1.43(1)n0.419(1.37)n0.0108(0.37)na_n=1.43(-1)^n-0.419(1.37)^n-0.0108(-0.37)^n







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment