Prove that a real number π₯ is irrational if and only if 5π₯ is irrational
"Let\\,\\,x\\notin \\mathbb{Q} . Suppose\\,\\,5x\\in \\mathbb{Q} ,then\\,\\,x=\\frac{5x}{5}\\in \\mathbb{Q} , which\\,\\,is\\,\\,a\\,\\,contradictory.\\\\Let\\,\\,5x\\notin \\mathbb{Q} . Suppose\\,\\,x\\in \\mathbb{Q} , then\\,\\,5x=5\\cdot x\\in \\mathbb{Q} , which\\,\\,is\\,\\,a\\,\\,contradictory.\\\\Thus\\\\x\\notin \\mathbb{Q} \\Leftrightarrow 5x\\notin \\mathbb{Q}"
Comments
Leave a comment