Answer to Question #324189 in Discrete Mathematics for Mohammed AL braydi

Question #324189

Given the recurrence relation π‘Žπ‘› =βˆ’2π‘Žπ‘›βˆ’1 +15π‘Žπ‘›βˆ’2 with the initial conditions π‘Ž0=1 and π‘Ž1=7.





(a) Write the characteristic equation.





(b) Solve the recurrence relation.






1
Expert's answer
2022-04-06T16:33:59-0400

an=βˆ’2anβˆ’1+15anβˆ’2a:Ξ»2=βˆ’2Ξ»+15Ξ»2+2Ξ»βˆ’15=0λ∈{βˆ’5,3}b:an=C1(βˆ’5)n+C23n{a0=1a1=7β‡’{C1+C2=1βˆ’5C1+3C2=7β‡’{C1=βˆ’0.5C2=1.5an=βˆ’0.5(βˆ’5)n+1.5β‹…3na_n=-2a_{n-1}+15a_{n-2}\\a:\\\lambda ^2=-2\lambda +15\\\lambda ^2+2\lambda -15=0\\\lambda \in \left\{ -5,3 \right\} \\b:\\a_n=C_1\left( -5 \right) ^n+C_23^n\\\left\{ \begin{array}{c} a_0=1\\ a_1=7\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_1+C_2=1\\ -5C_1+3C_2=7\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_1=-0.5\\ C_2=1.5\\\end{array} \right. \\a_n=-0.5\left( -5 \right) ^n+1.5\cdot 3^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment