Question #324189

Given the recurrence relation 𝑎𝑛 =−2𝑎𝑛−1 +15𝑎𝑛−2 with the initial conditions 𝑎0=1 and 𝑎1=7.





(a) Write the characteristic equation.





(b) Solve the recurrence relation.






1
Expert's answer
2022-04-06T16:33:59-0400

an=2an1+15an2a:λ2=2λ+15λ2+2λ15=0λ{5,3}b:an=C1(5)n+C23n{a0=1a1=7{C1+C2=15C1+3C2=7{C1=0.5C2=1.5an=0.5(5)n+1.53na_n=-2a_{n-1}+15a_{n-2}\\a:\\\lambda ^2=-2\lambda +15\\\lambda ^2+2\lambda -15=0\\\lambda \in \left\{ -5,3 \right\} \\b:\\a_n=C_1\left( -5 \right) ^n+C_23^n\\\left\{ \begin{array}{c} a_0=1\\ a_1=7\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_1+C_2=1\\ -5C_1+3C_2=7\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_1=-0.5\\ C_2=1.5\\\end{array} \right. \\a_n=-0.5\left( -5 \right) ^n+1.5\cdot 3^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS