Answer to Question #323672 in Discrete Mathematics for gift

Question #323672



1, In how many ways each 5 boys and 3 girls be seated around a table if:





i) There is no restriction?





ii, Boy Bi and girl Gi are not adjacent?





ji, No girls are adjacent?






2. Each user on a computer system has a password, which is six to eight characters





long. where each character is an upper case letter or a digit Fach password must





contain at least one digit. How many possible passwords are there?






3.how many ways are there to distribute 10 identical bones to 4 dogs if each dog must





stat least | bone and Fifi may not receive more than 3 bones’?






1
Expert's answer
2022-04-07T08:23:28-0400

i:8!=40320ii:Find  the  variants  when  Bi  and  Gi  are  adjacent:8variants  to  choose  a  pair  of  seats  for  them  (we  choose  the  chair  which  is  to  the  left  if  walking  clockwise),2variants  to  seat  them,6!=720  variants  to  seat  other  kids.That  is  82720=11520variants.Then  the  answer  is4032011520=28800variants.ji:The  possible  chairs  for  girls  are1,3,51,3,61,3,71,4,61,4,71,5,72,4,62,4,72,4,82,5,72,5,82,6,83,5,73,5,83,6,84,6,8Thus  there  are  16ways  to  seat  the  girls.3!=6  variants  of  seating  girls.5!=120  variants  of  seating  boys.Total  is166120=11520i:\\8!=40320\\ii:\\Find\,\,the\,\,variants\,\,when\,\,Bi\,\,and\,\,Gi\,\,are\,\,adjacent:\\8 variants\,\,to\,\,choose\,\,a\,\,pair\,\,of\,\,seats\,\,for\,\,them\,\,\left( we\,\,choose\,\,the\,\,chair\,\,which\,\,is\,\,to\,\,the\,\,left\,\,if\,\,walking\,\,clockwise \right) ,\\2 variants\,\,to\,\,seat\,\,them,\\6!=720\,\,variants\,\,to\,\,seat\,\,other\,\,kids.That\,\,is\,\,\\8\cdot 2\cdot 720=11520\\variants.\\Then\,\,the\,\,answer\,\,is\\40320-11520=28800\\variants.\\ji:\\The\,\,possible\,\,chairs\,\,for\,\,girls\,\,are\\1,3,5\\1,3,6\\1,3,7\\1,4,6\\1,4,7\\1,5,7\\2,4,6\\2,4,7\\2,4,8\\2,5,7\\2,5,8\\2,6,8\\3,5,7\\3,5,8\\3,6,8\\4,6,8\\Thus\,\,there\,\,are\,\,16ways\,\,to\,\,seat\,\,the\,\,girls.\\3!=6\,\,variants\,\,of\,\,seating\,\,girls.\\5!=120\,\,variants\,\,of\,\,seating\,\,boys.\\Total\,\,is\\16\cdot 6\cdot 120=11520


26letters10digits2:Passwords  of  6digits:P366P266=36!30!26!20!Passwords  of  7digits:P367P267=36!29!26!19!Passwords  of  8digits:P368P268=36!28!26!18!Total36!30!26!20!+36!29!26!19!+36!28!26!18!=1.1971×101226 letters\\10 digits\\2:\\Passwords\,\,of\,\,6 digits: \\P_{36}^{6}-P_{26}^{6}=\frac{36!}{30!}-\frac{26!}{20!}\\Passwords\,\,of\,\,7 digits: \\P_{36}^{7}-P_{26}^{7}=\frac{36!}{29!}-\frac{26!}{19!}\\Passwords\,\,of\,\,8 digits: \\P_{36}^{8}-P_{26}^{8}=\frac{36!}{28!}-\frac{26!}{18!}\\Total\\\frac{36!}{30!}-\frac{26!}{20!}+\frac{36!}{29!}-\frac{26!}{19!}+\frac{36!}{28!}-\frac{26!}{18!}=1.1971\times 10^{12}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment