Given
[1 1 -1]
A=[2 2 3]
[4 0 0]
[1 1 -1]
b=[2 2 3]
[4 0 0]
1.Find –A-1+ 3BT
2.Find B-1+ ( AT+A-1)
Given that
"A=\\begin{bmatrix}\n 1 & 1 & -1\\\\\n 2 & 2 & 3\\\\\n 4 & 0 &0\n\\end{bmatrix}" and "B=\\begin{bmatrix}\n 1 & 1 & -1\\\\\n 2 & 2 & 3\\\\\n 4 & 0 &0\n\\end{bmatrix}"
Then
"A^{T}=\\begin{bmatrix}\n 1 & 2 & 4\\\\\n 1 & 2 & 0\\\\\n -1 & 3 &0\n\\end{bmatrix}" and "B^{T}=\\begin{bmatrix}\n 1 & 2 & 4\\\\\n 1 & 2 & 0\\\\\n -1 & 3 &0\n\\end{bmatrix}"
"det(A)=\\begin{vmatrix}\n1 & 1 & -1\\\\\n 2 & 2 & 3\\\\\n 4 & 0 &0\n\\end{vmatrix}"
"det(A)=(1)(0-0)-(1)(0-12)+(-1)(0-8)"
"det(A)=0+12+8"
"det(A)=20"
And
"det(B)=\\begin{vmatrix}\n1 & 1 & -1\\\\\n 2 & 2 & 3\\\\\n 4 & 0 &0\n\\end{vmatrix}"
"det(B)=(1)(0-0)-(1)(0-12)+(-1)(0-8)"
"det(B)=0+12+8"
"det(B)=20"
For the matrix "A=\\begin{bmatrix}\n 1 &1&-1 \\\\\n 2 & 2&3\\\\\n4&0&0\n\\end{bmatrix}"
"A^{-1}=\\frac{adjointA}{det(A)}"
The adjoint of A is calculated by the cofactor method
"A^{-1}=\\frac{\\begin{bmatrix}\n 0 &0&5 \\\\\n 12&4&-5 \\\\\n-8 & 4&0\n\\end{bmatrix}}{(20)}"
"A^{-1}=\\begin{bmatrix}\n \\frac{0}{20} &\\frac{0}{20}&\\frac{5}{20} \\\\\n \\frac{12}{20} & \\frac{4}{20}&\\frac{3}{20}\\\\\n\\frac{-8}{20}&\\frac{4}{20}&\\frac{0}{20}\n\\end{bmatrix}"
"A^{-1}=\\begin{bmatrix} 0 &0 & 0.25\\\\ 0.6 & 0.2 & -0.25\\\\ -0.4 & 0.2 &0 \\end{bmatrix}"
Similarly
for the matrix "B=\\begin{bmatrix}\n 1 &1&-1 \\\\\n 2 & 2&3\\\\\n4&0&0\n\\end{bmatrix}"
"B^{-1}=\\frac{adjointB}{det(B)}"
The adjoint of B is calculated by the cofactor method
"B^{-1}=\\frac{\\begin{bmatrix}\n 0 &0&5 \\\\\n 12&4&-5 \\\\\n-8 & 4&0\n\\end{bmatrix}}{(20)}"
"B^{-1}=\\begin{bmatrix}\n \\frac{0}{20} &\\frac{0}{20}&\\frac{5}{20} \\\\\n \\frac{12}{20} & \\frac{4}{20}&\\frac{3}{20}\\\\\n\\frac{-8}{20}&\\frac{4}{20}&\\frac{0}{20}\n\\end{bmatrix}"
"B^{-1}=\\begin{bmatrix} 0 &0 & 0.25\\\\ 0.6 & 0.2 & -0.25\\\\ -0.4 & 0.2 &0 \\end{bmatrix}"
Comments
Leave a comment