Solve for the determinant in the equation below
2 −2 1
2 2 1
4 1 3
det(A)=∣2−21221413∣det(A)=\begin{vmatrix} 2 & -2 & 1\\ 2 & 2 & 1\\ 4 & 1 & 3\\ \end{vmatrix}det(A)=∣∣224−221113∣∣
det(A)=2∣2113∣−(−2)∣2143∣+(1)∣2241∣det(A)=2\begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix}-(-2)\begin{vmatrix} 2 &1 \\ 4 & 3 \end{vmatrix}+(1)\begin{vmatrix} 2 & 2 \\ 4 & 1 \end{vmatrix}det(A)=2∣∣2113∣∣−(−2)∣∣2413∣∣+(1)∣∣2421∣∣
det(A)=(2)(6−1)+(2)(6−4)+(1)(2−8)det(A)=(2)(6-1)+(2)(6-4)+(1)(2-8)det(A)=(2)(6−1)+(2)(6−4)+(1)(2−8)
det(A)=(2)(5)+(2)(2)+(1)(−6)det(A)=(2)(5)+(2)(2)+(1)(-6)det(A)=(2)(5)+(2)(2)+(1)(−6)
det(A)=10+4−6det(A)=10+4-6det(A)=10+4−6
det(A)=8det(A)=8det(A)=8
Hence
∣2−21221413∣=8\begin{vmatrix} 2 & -2 & 1\\ 2 & 2 & 1\\ 4 & 1 & 3\\ \end{vmatrix}=8∣∣224−221113∣∣=8
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments