Solve for the determinant in the equation below
2 −2 1
2 2 1
4 1 3
"det(A)=\\begin{vmatrix}\n 2 & -2 & 1\\\\\n 2 & 2 & 1\\\\\n 4 & 1 & 3\\\\\n\\end{vmatrix}"
"det(A)=2\\begin{vmatrix}\n 2 & 1 \\\\\n 1 & 3\n\\end{vmatrix}-(-2)\\begin{vmatrix}\n 2 &1 \\\\\n 4 & 3\n\\end{vmatrix}+(1)\\begin{vmatrix}\n 2 & 2 \\\\\n 4 & 1\n\\end{vmatrix}"
"det(A)=(2)(6-1)+(2)(6-4)+(1)(2-8)"
"det(A)=(2)(5)+(2)(2)+(1)(-6)"
"det(A)=10+4-6"
"det(A)=8"
Hence
"\\begin{vmatrix}\n 2 & -2 & 1\\\\\n 2 & 2 & 1\\\\\n 4 & 1 & 3\\\\\n\\end{vmatrix}=8"
Comments
Leave a comment