Question #311847

Solve for the determinant in the equation below

2 −2 1

2 2 1

4 1 3


1
Expert's answer
2022-03-16T17:56:06-0400

Solution

det(A)=221221413det(A)=\begin{vmatrix} 2 & -2 & 1\\ 2 & 2 & 1\\ 4 & 1 & 3\\ \end{vmatrix}


det(A)=22113(2)2143+(1)2241det(A)=2\begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix}-(-2)\begin{vmatrix} 2 &1 \\ 4 & 3 \end{vmatrix}+(1)\begin{vmatrix} 2 & 2 \\ 4 & 1 \end{vmatrix}


det(A)=(2)(61)+(2)(64)+(1)(28)det(A)=(2)(6-1)+(2)(6-4)+(1)(2-8)


det(A)=(2)(5)+(2)(2)+(1)(6)det(A)=(2)(5)+(2)(2)+(1)(-6)


det(A)=10+46det(A)=10+4-6


det(A)=8det(A)=8


Hence


221221413=8\begin{vmatrix} 2 & -2 & 1\\ 2 & 2 & 1\\ 4 & 1 & 3\\ \end{vmatrix}=8



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS