1. Convert the following to their decimal equivalence:
20228
ACE16
(2022)8=(2×83+0×82+2×81+2×80)10{\left( {2022} \right)_8} = {\left( {2 \times {8^3} + 0 \times {8^2} + 2 \times {8^1} + 2 \times {8^0}} \right)_{10}} \\(2022)8=(2×83+0×82+2×81+2×80)10
(2022)8=(2×512+0×8+2×8+2×1)10{\left( {2022} \right)_8} = {\left( {2 \times 512 + 0 \times 8 + 2 \times 8 + 2 \times 1} \right)_{10}} \\(2022)8=(2×512+0×8+2×8+2×1)10
(2022)8=(1024+0+16+2)10{\left( {2022} \right)_8} = {\left( {1024 + 0 + 16 + 2} \right)_{10}} \\(2022)8=(1024+0+16+2)10
(2022)8=(1042)10{\left( {2022} \right)_8} = {\left( {1042} \right)_{10}} \\(2022)8=(1042)10
Solution (b)
(ACE)16=(A×162+C×161+E×160)10{\left( {ACE} \right)_{16}} = {\left( {A \times {{16}^2} + C \times {{16}^1} + E \times {{16}^0}} \right)_{10}}(ACE)16=(A×162+C×161+E×160)10
(ACE)16=(10×256+12×16+14×1)10{\left( {ACE} \right)_{16}} = {\left( {10 \times 256 + 12 \times 16 + 14 \times 1} \right)_{10}}(ACE)16=(10×256+12×16+14×1)10
(ACE)16=(2560+192+14)10{\left( {ACE} \right)_{16}} = {\left( {2560 + 192 + 14} \right)_{10}}(ACE)16=(2560+192+14)10
(ACE)16=(2766)10{\left( {ACE} \right)_{16}} = {\left( {2766} \right)_{10}}(ACE)16=(2766)10
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment