Use the Principle of Mathematical Induction to prove that (2π)! /(2n)π! is odd for all positive integers.
ForΒ n=1, we have
"\\frac{(2 n) !}{2 ! n !}=\\frac{2 !}{2 ! !}=1 \\text { is odd }"
Hence the result is true for n=1 (base case)
Let it be true for n=K.
Now for n=k+1
"\\begin{aligned}\n\n\\frac{(2 k+2) !}{2^{k+1} \\cdot(k+1) !} &=\\frac{(2 k+2)(2 k+1)(2 x) !}{2 \\cdot 2^{k} \\cdot(k+1) \\cdot k !} \\\\\n\n&=\\frac{(2 k) !}{2^{k} \\cdot k !} \\cdot \\frac{2(k+1) \\cdot(2 k+1)}{2(k+1)} \\\\\n\n&=\\frac{(2 k) !}{2^{k} \\cdot k !} \\cdot(2 k+1) \\\\\n&\\text{where}\\ \\frac{(2 k) !}{2^{k} \\cdot k !} ,(2 k+1)\\ \\text{are odd}\n\\end{aligned}"
Hence the result is true for n=k+1.
Thus the result is true for all +ve integers by mathematical induction.
Comments
Leave a comment