Solution:
Proof by Contradiction Method:
- "p\\rightarrow (q\\lor r)" Premise
- "q\\rightarrow s" Premise
- "\\neg (p\\rightarrow (r\\lor s))" Premise, proof by contradiction
- "\\neg (\\neg p\\lor (r\\lor s))" 3, Definition of "\\rightarrow"
- "p\\land \\neg (r\\lor s)" 4, DeMorgan’s law
- "p" 5, Specialization
- "\\neg (r\\lor s)" 5, Specialization
- "\\neg r\\land \\neg s" 7, DeMorgan’s law
- "\\neg r" 8, Specialization
- "\\neg s" 8, Specialization
- "\\neg q" 2, 10, Modus Tollens
- "\\neg q\\land \\neg r" 9, 11
- "\\neg (q\\lor r)" 12, DeMorgan’s law
- "\\neg p" 1, 13, Modus Tollens
- False 6, 14, proof by contradiction
Premise "\\neg (p\\rightarrow (r\\lor s))" was false, so "p\\rightarrow (r\\lor s)" must be true.
Comments
Leave a comment