Answer to Question #284263 in Discrete Mathematics for Frank

Question #284263

Show that the following logical equivalences hold for the



Peirce arrow ↓, where P ↓ Q ≡ ∼(P ∨ Q).



a. ∼P ≡ P ↓ P



b. P ∨ Q ≡ (P ↓ Q) ↓ (P ↓ Q)



c. P ∧ Q ≡ (P ↓ P) ↓ (Q ↓ Q)



H d. Write P → Q using Peirce arrows only.



e. Write P ↔ Q using Peirce arrows only.


1
Expert's answer
2022-02-01T12:25:15-0500

(a) By the definition of piece arrow-

   

  "P\\downarrow Q=" ~"(P\\lor Q)"

 

  "P\\downarrow Q" =~"(P\\lor P)"


  We have derived that "P\\downarrow P" is logically equivalent with ~P

      ~"P=P\\downarrow P"


(b)"(P\\downarrow Q)\\downarrow (P\\downarrow Q)" =(~("P\\lor Q))\\downarrow" (~"(P\\lor Q)"

                       "=(P\\lor Q)\\land (P\\lor Q)\\\\\n\n =P\\lor Q"


(c)"(P\\downarrow P)\\downarrow (Q\\downarrow Q)" =(~("P\\lor P))\\downarrow" (~("Q\\lor Q))"

                       "=(P\\lor P)\\land (Q\\lor Q)\\\\\n\n =P\\land Q"


d)

"P \u2192 Q\\equiv \\neg P \\lor Q"

"\\neg P\\equiv P\\downarrow P"

"P \\lor Q \\equiv \\neg(P\\downarrow Q)"

"\\neg P \\lor Q\\equiv \\neg(\\neg P\\downarrow Q)\\equiv \\neg((P\\downarrow P)\\downarrow Q)\\equiv ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)"

"P \u2192 Q\\equiv ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)"


e)

"P \u2194 Q\\equiv (P \u2192 Q) \\land (Q \u2192 P)"

"P \u2194 Q\\equiv ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)\\land((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)\\equiv"


"[((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)]\\downarrow"

"[((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)]"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS