Show that the following logical equivalences hold for the
Peirce arrow ↓, where P ↓ Q ≡ ∼(P ∨ Q).
a. ∼P ≡ P ↓ P
b. P ∨ Q ≡ (P ↓ Q) ↓ (P ↓ Q)
c. P ∧ Q ≡ (P ↓ P) ↓ (Q ↓ Q)
H d. Write P → Q using Peirce arrows only.
e. Write P ↔ Q using Peirce arrows only.
(a) By the definition of piece arrow-
"P\\downarrow Q=" ~"(P\\lor Q)"
"P\\downarrow Q" =~"(P\\lor P)"
We have derived that "P\\downarrow P" is logically equivalent with ~P
~"P=P\\downarrow P"
(b)"(P\\downarrow Q)\\downarrow (P\\downarrow Q)" =(~("P\\lor Q))\\downarrow" (~"(P\\lor Q)"
"=(P\\lor Q)\\land (P\\lor Q)\\\\\n\n =P\\lor Q"
(c)"(P\\downarrow P)\\downarrow (Q\\downarrow Q)" =(~("P\\lor P))\\downarrow" (~("Q\\lor Q))"
"=(P\\lor P)\\land (Q\\lor Q)\\\\\n\n =P\\land Q"
d)
"P \u2192 Q\\equiv \\neg P \\lor Q"
"\\neg P\\equiv P\\downarrow P"
"P \\lor Q \\equiv \\neg(P\\downarrow Q)"
"\\neg P \\lor Q\\equiv \\neg(\\neg P\\downarrow Q)\\equiv \\neg((P\\downarrow P)\\downarrow Q)\\equiv ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)"
"P \u2192 Q\\equiv ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)"
e)
"P \u2194 Q\\equiv (P \u2192 Q) \\land (Q \u2192 P)"
"P \u2194 Q\\equiv ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)\\land((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)\\equiv"
"[((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)\\downarrow ((P\\downarrow P)\\downarrow Q)]\\downarrow"
"[((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)\\downarrow ((Q\\downarrow Q)\\downarrow P)]"
Comments
Leave a comment