(a) By the definition of piece arrow-
P↓Q= ~(P∨Q)
P↓Q =~(P∨P)
We have derived that P↓P is logically equivalent with ~P
~P=P↓P
(b)(P↓Q)↓(P↓Q) =(~(P∨Q))↓ (~(P∨Q)
=(P∨Q)∧(P∨Q)=P∨Q
(c)(P↓P)↓(Q↓Q) =(~(P∨P))↓ (~(Q∨Q))
=(P∨P)∧(Q∨Q)=P∧Q
d)
P→Q≡¬P∨Q
¬P≡P↓P
P∨Q≡¬(P↓Q)
¬P∨Q≡¬(¬P↓Q)≡¬((P↓P)↓Q)≡((P↓P)↓Q)↓((P↓P)↓Q)
P→Q≡((P↓P)↓Q)↓((P↓P)↓Q)
e)
P↔Q≡(P→Q)∧(Q→P)
P↔Q≡((P↓P)↓Q)↓((P↓P)↓Q)∧((Q↓Q)↓P)↓((Q↓Q)↓P)≡
[((P↓P)↓Q)↓((P↓P)↓Q)↓((P↓P)↓Q)↓((P↓P)↓Q)]↓
[((Q↓Q)↓P)↓((Q↓Q)↓P)↓((Q↓Q)↓P)↓((Q↓Q)↓P)]
Comments
Leave a comment