Answer to Question #283048 in Discrete Mathematics for Shoaib

Question #283048

Show that the following logical equivalences hold for the



Peirce arrow ↓, where P ↓ Q ≡ ∼(P ∨ Q).



a. ∼P ≡ P ↓ P



b. P ∨ Q ≡ (P ↓ Q) ↓ (P ↓ Q)



c. P ∧ Q ≡ (P ↓ P) ↓ (Q ↓ Q)



H d. Write P → Q using Peirce arrows only.



e. Write P ↔ Q using Peirce arrows only.

1
Expert's answer
2022-02-04T06:26:25-0500

(a) By the definition of piece arrow-

   

  PQ=P\downarrow Q= ~(PQ)(P\lor Q)

 

  PQP\downarrow Q =~(PP)(P\lor P)


  We have derived that PPP\downarrow P is logically equivalent with ~P

      ~P=PPP=P\downarrow P


(b)(PQ)(PQ)(P\downarrow Q)\downarrow (P\downarrow Q) =(~(PQ))P\lor Q))\downarrow (~(PQ)(P\lor Q)

                       =(PQ)(PQ)=PQ=(P\lor Q)\land (P\lor Q)\\ =P\lor Q


(c)(PP)(QQ)(P\downarrow P)\downarrow (Q\downarrow Q) =(~(PP))P\lor P))\downarrow (~(QQ))Q\lor Q))

                       =(PP)(QQ)=PQ=(P\lor P)\land (Q\lor Q)\\ =P\land Q


d)

PQ¬PQP → Q\equiv \neg P \lor Q

¬PPP\neg P\equiv P\downarrow P

PQ¬(PQ)P \lor Q \equiv \neg(P\downarrow Q)

¬PQ¬(¬PQ)¬((PP)Q)((PP)Q)((PP)Q)\neg P \lor Q\equiv \neg(\neg P\downarrow Q)\equiv \neg((P\downarrow P)\downarrow Q)\equiv ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)

PQ((PP)Q)((PP)Q)P → Q\equiv ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)


e)

PQ(PQ)(QP)P ↔ Q\equiv (P → Q) \land (Q → P)

PQ((PP)Q)((PP)Q)((QQ)P)((QQ)P)P ↔ Q\equiv ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)\land((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)\equiv


[((PP)Q)((PP)Q)((PP)Q)((PP)Q)][((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)\downarrow ((P\downarrow P)\downarrow Q)]\downarrow

[((QQ)P)((QQ)P)((QQ)P)((QQ)P)][((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)\downarrow ((Q\downarrow Q)\downarrow P)]

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment