Answer to Question #282829 in Discrete Mathematics for ganesh

Question #282829
  1. Consider a Boolean expression Ex,y,z=xzv(y^z). Find disjunctive and conjunctive normal form.
1
Expert's answer
2022-01-07T07:40:29-0500

Solution:


So, the disjunctive normal form of "E(x,y,z)=xz\\vee (y\\wedge z)" is

"(\\bar{x} \\wedge y \\wedge z) \\vee(x \\wedge \\bar{y} \\wedge z) \\vee(x \\wedge y \\wedge z)"




Hence, the conjunctive normal form of "E(x, y, z)=x z \\vee(y \\wedge z) \\text { is }""\\begin{aligned} & \\\\(x \\vee y \\vee z) \\wedge(x \\vee y \\vee \\bar{z}) \\wedge(x \\vee \\bar{y} \\vee z) \\wedge(\\bar{x} \\vee y \\vee z) \\wedge(\\bar{x} \\vee \\bar{y} \\vee z)& \\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS