So, the disjunctive normal form of "E(x,y,z)=xz\\vee (y\\wedge z)" is
"(\\bar{x} \\wedge y \\wedge z) \\vee(x \\wedge \\bar{y} \\wedge z) \\vee(x \\wedge y \\wedge z)"
Hence, the conjunctive normal form of "E(x, y, z)=x z \\vee(y \\wedge z) \\text { is }""\\begin{aligned} & \\\\(x \\vee y \\vee z) \\wedge(x \\vee y \\vee \\bar{z}) \\wedge(x \\vee \\bar{y} \\vee z) \\wedge(\\bar{x} \\vee y \\vee z) \\wedge(\\bar{x} \\vee \\bar{y} \\vee z)& \\end{aligned}"
Comments
Leave a comment