Answer the following items. Show your complete answer on a separate sheet of paper.
Prove that the following sentences are tautologies.
1. p →p
2. p → (p V q)
3. [p Λ (p → q)] → q
4. p V ~p
5. q → (p V ~p)
6. ~p → (p →q)
7. (p Λ q) → p
8. (p → q) → [(p V r) → (q V r)]
9. ~q → ~(q Λ r)
"1. \\, p \\to p = \\,\\,\\,\\ \\thicksim p \\bigvee p = T\\\\\n2. \\,p \\to (p \\bigvee q) = \\,\\,\\,\\ \\thicksim p \\bigvee p \\bigvee q = T \\bigvee q = T\\\\\n3.\\, [p \\bigwedge (p \\to q)] \\to q = \\,\\,\\,\\ \\thicksim {[p \\bigwedge (p \\to q)]} \\bigvee q = \\\\\n\\,\\,\\,\\ \\thicksim p \\bigvee \\thicksim (p \\to q) \\bigvee q =\\\\\n \\,\\,\\,\\ \\thicksim p \\bigvee \\thicksim (\\thicksim p \\bigvee q) \\bigvee q = \\\\\n\\,\\,\\,\\ \\thicksim p \\bigvee (p \\bigwedge \\thicksim q) \\bigvee q = \\\\\n\\,\\,\\,\\ (\\thicksim p \\bigvee p) \\bigwedge (\\thicksim p \\bigvee \\thicksim q) \\bigvee q = \\\\\n\\,\\,\\,\\ T \\bigwedge (\\thicksim p \\bigvee \\thicksim q) \\bigvee q = (\\thicksim p \\bigvee \\thicksim q) \\bigvee q = \\\\\n\\,\\,\\,\\ \\thicksim p \\bigvee \\thicksim q \\bigvee q = \\thicksim p \\bigvee T = T\\\\\n4.\\,p \\bigvee \\thicksim p = \\,\\,\\,\\ \\thicksim (\\thicksim p \\bigwedge p) = \\,\\,\\,\\ \\thicksim F = T\\\\\n5.\\, q \\to (p \\bigvee \\thicksim p) = q \\to T =\\,\\,\\,\\thicksim q \\bigvee T = T\\\\\n6. \\thicksim p \\to (p \\to q) = \\,\\,\\, \\thicksim p \\to (\\thicksim p \\bigvee q) = \\\\\n\\,\\,\\,\\ p \\bigvee \\thicksim p \\bigvee q = \\\\\n\\,\\,\\,\\ T \\bigvee q = T\\\\\n7.\\, (p \\bigwedge q) \\to p = \\,\\,\\,\\ \\thicksim (p \\bigwedge q) \\bigvee p =\\\\\n \\,\\,\\,\\ \\thicksim p \\bigvee \\thicksim q \\bigvee p = \\\\\n\\,\\,\\,\\ T \\bigvee \\thicksim q = T\\\\\n8.\\, (p \\to q) \\to [(p \\bigvee r) \\to (q \\bigvee r)] = \\\\\n\\,\\,\\,\\ (\\thicksim p \\bigvee q) \\to [\\thicksim (p \\bigvee r) \\bigvee (q \\bigvee r)] = \\\\\n\\,\\,\\,\\ (\\thicksim p \\bigvee q) \\to [(\\thicksim p \\bigwedge \\thicksim r) \\bigvee (q \\bigvee r)] = \\\\\n\\,\\,\\,\\ \\thicksim (\\thicksim p \\bigvee q) \\bigvee [(\\thicksim p \\bigwedge \\thicksim r) \\bigvee (q \\bigvee r)] = \\,\\,\\,\\ \\\\\n\\,\\,\\,\\ (p \\bigwedge \\thicksim q) \\bigvee (\\thicksim p \\bigwedge \\thicksim r) \\bigvee q \\bigvee r = \\\\\n\\,\\,\\,\\ (p \\bigwedge \\thicksim q) \\bigvee q \\bigvee (\\thicksim p \\bigwedge \\thicksim r) \\bigvee r\\ = \\\\\n\\,\\,\\,\\ [(p \\bigvee q) \\bigwedge (\\thicksim q \\bigvee q)] \\bigvee [(\\thicksim p \\bigvee r) \\bigwedge (\\thicksim r \\bigvee r)] = \\\\\n\\,\\,\\,\\ [(p \\bigvee q) \\bigwedge T] \\bigvee [(\\thicksim p \\bigvee r) \\bigwedge T] = \\\\\n\\,\\,\\,\\ p \\bigvee q \\bigvee \\thicksim p \\bigvee r = \\\\\n\\,\\,\\,\\ T \\bigvee q \\bigvee r = T\\\\\n9.\\, \\thicksim q \\to \\,\\,\\, \\thicksim (q \\bigwedge r) = q \\bigvee \\thicksim q \\bigvee \\thicksim r = \\\\\n\\,\\,\\,\\ T \\bigvee \\thicksim r = T\\\\"
Comments
Leave a comment