4. Let A and B be sets. Prove the commutative laws from Table 1 by showing that
a) A ∪ B = B ∪ A.
b) A ∩ B = B ∩ A.
a) Let "x\u2208A\u222aB." Then "x\u2208A" or "x\u2208B." Which implies "x\u2208B" or "x\u2208A."
Hence "x\u2208B\u222aA."
Thus "A\u222aB\u2286B\u222aA."
Similarly, we can show that "B\u222aA\u2286A\u222aB."
Therefore, "A\u222aB=B\u222aA."
b) Let "x\u2208A\u2229B." Then "x\u2208A" and "x\u2208B." Which implies "x\u2208B" and "x\u2208A." Hence "x\u2208B\u2229A."
Thus "A\u2229B\u2286B\u2229A."
Similarly, we can show that "B\u2229A\u2286A\u2229B."
Therefore, "A\u2229B=B\u2229A."
Comments
Leave a comment