Question #282374

Use the binomial theorem to find the coefficient of x^a y^b in the expansion of (2x^3




− 4y^2)




7, where




a) a = 9, b = 8.




b) a = 8, b = 9.




c) a = 0, b = 14.




d) a = 12, b = 6.




e) a = 18, b = 2.




35) How many unique partitions of the word ARKANSAS are there?




36) A group of six students consists of 3 seniors, 2 juniors, and 1 sophomore. How




many unique partitions of this group of students are there by grade?

1
Expert's answer
2021-12-26T16:58:34-0500

34)

binomial theorem:

(p+q)n=(nk)pnkqk(p+q)^n=\sum \begin{pmatrix} n \\ k \end{pmatrix}p^{n-k}q^k

we have:

(2x34y2)7(2x^3-4y^2)^7


a)

coefficient of x9y8x^9 y^8 :

(74)(2x3)3(4y2)4=358256x9y8=71680x9y8\begin{pmatrix} 7 \\ 4 \end{pmatrix}(2x^3)^3(4y^2)^4=35\cdot8\cdot256x^9y^8=71680x^9y^8


b)

coefficient of x8y9x^8 y^9 is 0, because it is impossible to get x8 having initial term x3 (same for y)


c)

coefficient of x0y14x^0 y^{14} :

(77)(2x3)0(4y2)7=47y14=16384y14\begin{pmatrix} 7 \\ 7 \end{pmatrix}(2x^3)^0(4y^2)^7=4^7y^{14}=16384y^{14}


d)

coefficient of x12y6x^{12} y^{6} :

(73)(2x3)4(4y2)3=351664x12y6=35840x12y6\begin{pmatrix} 7 \\ 3 \end{pmatrix}(2x^3)^4(4y^2)^3=35\cdot16\cdot64x^{12}y^6=35840x^{12}y^6


e)

coefficient of x18y2x^{18} y^{2} :

(71)(2x3)6(4y2)1=7644x18y2=1792x18y2\begin{pmatrix} 7 \\ 1 \end{pmatrix}(2x^3)^6(4y^2)^1=7\cdot64\cdot4x^{18}y^2=1792x^{18}y^2


35)

a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.

A multinomial coefficient describes the number of possible partitions of n objects into k groups of size n1n2, …, nk.

Multinomial Coefficient = n!n1!n2!...nk!\frac{n!}{n_1!n_2!...n_k!}


for word ARKANSAS:

Multinomial Coefficient = 8!3!1!1!1!2!=3360\frac{8!}{3!1!1!1!2!}=3360

There are 3,360 unique partitions of the word ARKANSAS.


36)

Multinomial Coefficient = 6!3!2!1!=60\frac{6!}{3!2!1!}=60

There are 60 unique partitions of these students by grade.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS