Question #281095

Consider a relation R= {(1, 1) (1, 3), (2, 2), (2,3) (3,1)on the set A = (1,2,3) Find transitive using warshalls algorithm... closure of the relation R consider

1
Expert's answer
2021-12-22T09:36:21-0500

Consider a relation R={(1,1),(1,3),(2,2),(2,3),(3,1)}R=\{ (1,1),(1, 3), (2,2), (2,3), (3,1)\} on the set A={1,2,3}A=\{1,2,3\}.


Let us state the steps of the Warshall's algorithm:


1. Let W:=MR, k:=0.W:=M_R,\ k:=0.

2. Put k:=k+1.k:=k+1.

3. For all iki\ne k such that wik=1w_{ik}=1 and for all jj let wij=wijwkj.w_{ij}=w_{ij}\lor w_{kj}.

4. If k=nk=n then stop and W=MR,W=M_{R^*}, else go to step 2.


Let us find transitive closure of the relation RR using Warshall's algorithm:


W(0)=MR=(101011100)W^{(0)}=M_R =\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix}


W(1)=(101011101)W^{(1)} =\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix}


W(2)=(101011101)W^{(2)} =\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix}


MR=W(3)=(101111101)M_{R^*}=W^{(3)} =\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix}


It follows that R={(1,1),(1,3),(2,1),(2,2),(2,3),(3,1),(3,3)}.R^*=\{ (1,1),(1, 3), (2,1),(2,2), (2,3), (3,1),(3,3)\}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS