For each of the following pairs of functions, determine whether π(π) = πΆ(π(π)) or
π(π) = πΆ(π(π)).
a. π(π) = π(π β 1)β2 and π(π) = 6π
b. π(π) = π + 2βπ and π(π) = π^2
c. π(π) = π + log π and π(π) = πβπ
d. π(π) = π log π and π(π) = πβπ/2
e. π(π) = 2(log π)^2
and π(π) = log π + 1
a.
"g(n)=6n\\le 6f(n)=6n(n-1)"
π(π) = πΆ(π(π))
b.
"\ud835\udc53(\ud835\udc5b) = \ud835\udc5b + 2\\sqrt\ud835\udc5b\\le 3n\\le 3\ud835\udc54(\ud835\udc5b) = 3\ud835\udc5b^2"
π(π) = πΆ(π(π))
c.
"\ud835\udc53(\ud835\udc5b) = \ud835\udc5b + log \ud835\udc5b\\le 2n\\le 2\ud835\udc54(\ud835\udc5b) = 2\ud835\udc5b\\sqrt \ud835\udc5b"
π(π) = πΆ(π(π))
e.
"\ud835\udc54(\ud835\udc5b) = log \ud835\udc5b + 1\\le 2logn\\le 2f(n)=2(log \ud835\udc5b)^2"
π(π) = πΆ(π(π))
d.
"\ud835\udc53(\ud835\udc5b) = \ud835\udc5b log \ud835\udc5b\\le n\\sqrt n=2\ud835\udc54(\ud835\udc5b)"
π(π) = πΆ(π(π))
Comments
Leave a comment