Question #280879

For each of the following pairs of functions, determine whether 𝒇(𝒏) = 𝑶(𝒈(𝒏)) or


𝒈(𝒏) = 𝑶(𝒇(𝒏)).


a. 𝑓(𝑛) = 𝑛(𝑛 − 1)⁄2 and 𝑔(𝑛) = 6𝑛


b. 𝑓(𝑛) = 𝑛 + 2√𝑛 and 𝑔(𝑛) = 𝑛^2


c. 𝑓(𝑛) = 𝑛 + log 𝑛 and 𝑔(𝑛) = 𝑛√𝑛


d. 𝑓(𝑛) = 𝑛 log 𝑛 and 𝑔(𝑛) = 𝑛√𝑛/2


e. 𝑓(𝑛) = 2(log 𝑛)^2


and 𝑔(𝑛) = log 𝑛 + 1


1
Expert's answer
2021-12-21T12:26:28-0500

a.

g(n)=6n6f(n)=6n(n1)g(n)=6n\le 6f(n)=6n(n-1)

𝒈(𝒏) = 𝑶(𝒇(𝒏))


b.

𝑓(𝑛)=𝑛+2𝑛3n3𝑔(𝑛)=3𝑛2𝑓(𝑛) = 𝑛 + 2\sqrt𝑛\le 3n\le 3𝑔(𝑛) = 3𝑛^2

𝒇(𝒏) = 𝑶(𝒈(𝒏))


c.

𝑓(𝑛)=𝑛+log𝑛2n2𝑔(𝑛)=2𝑛𝑛𝑓(𝑛) = 𝑛 + log 𝑛\le 2n\le 2𝑔(𝑛) = 2𝑛\sqrt 𝑛

𝒇(𝒏) = 𝑶(𝒈(𝒏))


e.

𝑔(𝑛)=log𝑛+12logn2f(n)=2(log𝑛)2𝑔(𝑛) = log 𝑛 + 1\le 2logn\le 2f(n)=2(log 𝑛)^2

𝒈(𝒏) = 𝑶(𝒇(𝒏))


d.

𝑓(𝑛)=𝑛log𝑛nn=2𝑔(𝑛)𝑓(𝑛) = 𝑛 log 𝑛\le n\sqrt n=2𝑔(𝑛)

𝒇(𝒏) = 𝑶(𝒈(𝒏))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS