solve the following recurrence relations
a. π(π) = π( π/4) + π( π/2 ) + π^2
b. T(n) = T(n/5) + T(4n/5) + n
c. π(π) = 3π( n/4 ) + ππ^2Β
f. π(π) = (π/πβ5) * π(π β 1) + 1
g. π(π) = π(log π) + log π
h. π(π) = π (π^ 1/ 4) + 1
i. π(π) = π + 7 βπ β π(βπ)
j. π(π) = π ( 3π/4 ) + 1/root(n)
a.
"T(n)=n^2+5n^2\/16+25n^2\/256+...=n^2\/(1-5\/16)"
"T(n)=O(n^2)"
c.
Comparing with "T(n)=aT(n\/b)+f(n)" :
"a=3,b=4"
so, we have:
"f(n)=\\Omega(n^{log_ba})=\\Omega(n^{log_43})"
by Master Theorem:
"T(n)=\\Theta(f(n))=\\Theta(n^2)"
b.
additive term is exactly the current subproblem size, so T(n) is simply the sum of all numbers that appear in this tree. the:
"T(n)\\ge nlog_5n" and "T(n)\\le nlog_{5\/2}n"
so,
"T(n)=\\Theta(nlogn)"
g.
for the upper bound:
"T(n)=O(logn)"
also "T(n)=\\Omega(logn)"
so,
"T(n)=\\Theta(logn)"
j.
using Master Theorem:
"f(n)=O(n^{log_{4\/3}3})"
so,
"T(n)=\\Theta(n^{log_{4\/3}3})"
h.
"\ud835\udc47(\ud835\udc5b) = \ud835\udc47 (\ud835\udc5b^{ 1\/ 4}) + 1=\ud835\udc47 (\ud835\udc5b^{ 1\/ 16}) + 2=\ud835\udc47 (\ud835\udc5b^{ 1\/ 64}) + 3=\ud835\udc47 (\ud835\udc5b^{ 1\/ 4^n}) + n"
"T(n)=O(n)"
i.
"\ud835\udc47(\ud835\udc5b) = \ud835\udc5b + 7 \ud835\udc47(\\sqrt\ud835\udc5b)\\sqrt n=7\\sqrt n(7T(n^{1\/4})n^{1\/4}+n^{1\/2})+n="
"=7^kn^{1\/2+1\/4+1\/8+...+1\/2^k}T(n^{1\/2^k})+...+n"
"1\/2+1\/4+1\/8+...+1\/2^k=1-1\/2^k"
let "n^{1\/2^k}=2" , then:
"\ud835\udc47(\ud835\udc5b)=7^nT(2)n\/2+...+n"
"\ud835\udc47(\ud835\udc5b)=O(7^nn)"
f.
"\ud835\udc47(\ud835\udc5b) = (\ud835\udc5b\/(\ud835\udc5b\u22125)) \ud835\udc47(\ud835\udc5b \u2212 1) + 1"
"T(n)=(\\frac{n}{n-5})^{n-1}T(1)+(\\frac{n}{n-5})^{n-2}+...+1"
"T(n)=O(1)"
Comments
Leave a comment