Let A be a given finite set and P(A) its power set. Let ⊆ be the inclusion relation on the elements of P(A). Draw Hasse diagrams of (P(A), ⊆) for A={a}; A={a,b}; A={a,b,c} and A={a,b.c.d}.
for A={a}A=\{a\}A={a} :
P(A)={∅,{a}}P(A)=\{\empty,\{a\}\}P(A)={∅,{a}}
for A={a,b}A=\{a,b\}A={a,b} :
P(A)={∅,{a},{b},{a,b}}P(A)=\{\empty,\{a\},\{b\},\{a,b\}\}P(A)={∅,{a},{b},{a,b}}
for A={a,b,c}A=\{a,b,c\}A={a,b,c} :
P(A)={∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}P(A)=\{\empty,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}P(A)={∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
for A={a,b,c,d}A=\{a,b,c,d\}A={a,b,c,d} :
P(A)={∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},P(A)=\{\empty,\{a\},\{b\},\{c\},\{d\},\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\},P(A)={∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},
{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}}\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\},\{a,b,c,d\}\}{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}}
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments