Question #271874

solve the recurrence relation Pn = Pn-1 + n with initial condition P1 = 2 using interation.

1
Expert's answer
2021-11-29T11:18:14-0500

P(n)=P(n1)+nP(n)=P(n-1)+n


P(n1)=P(n2)+n1P(n-1)=P(n-2)+n-1


P(n)=P(n1)+n=P(n2)+n1+nP(n)=P(n-1)+n=P(n-2)+n-1+n



P(n)=P(n2)+2n(0+1)P(n)=P(n-2)+2n-(0+1)



P(n2)=P(n3)+n2P(n-2)=P(n-3)+n-2

P(n)=P(n1)+n=P(n2)+2n1P(n)=P(n-1)+n=P(n-2)+2n-1

=P(n3)+3n3=P(n-3)+3n-3


P(n)=P(n3)+3n(0+1+2)P(n)=P(n-3)+3n-(0+1+2)



P(n3)=P(n4)+n3P(n-3)=P(n-4)+n-3


P(n)=P(n1)+n=P(n2)+2n1P(n)=P(n-1)+n=P(n-2)+2n-1


=P(n3)+3n3=P(n4)+4n6=P(n-3)+3n-3=P(n-4)+4n-6

P(n)=P(n4)+4n(0+1+2+3)P(n)=P(n-4)+4n-(0+1+2+3)



......

P(n)=P(nk)+kni=0k1i, k=1,2,...,n1P(n)=P(n-k)+kn-\displaystyle\sum_{i=0}^{k-1}i, \ k=1,2,..., n-1

P(1)=P(n(n1))P(1)=P(n-(n-1))

Then


P(n)=P(1)+(n1)ni=0n2i,n=2,3,...P(n)=P(1)+(n-1)n-\displaystyle\sum_{i=0}^{n-2}i, n=2, 3, ...

i=0n2i,=(n2)(n2+1)2\displaystyle\sum_{i=0}^{n-2}i,=\dfrac{(n-2)(n-2+1)}{2}

=(n2)(n1)2,n=2,3,...=\dfrac{(n-2)(n-1)}{2}, n=2, 3, ...


P(n)=2+(n1)n(n2)(n1)2P(n)=2+(n-1)n-\dfrac{(n-2)(n-1)}{2}

=2+(n1)(2nn+2)2=2+(n1)(n+2)2=2+\dfrac{(n-1)(2n-n+2)}{2}=2+\dfrac{(n-1)(n+2)}{2}

=2+(n1)(n+2)2,n2=2+\dfrac{(n-1)(n+2)}{2}, n\geq2

P(n)=2+(n1)(n+2)2,n1P(n)=2+\dfrac{(n-1)(n+2)}{2},n\geq1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS