Question #271839

Show that if x is a real number, then x − 1 < ⌊x⌋ ≤ x ≤



⌈x⌉ < x + 1.

1
Expert's answer
2021-11-29T05:34:49-0500

n=xnx<n+1{x1<nnxx1<xxn=\lfloor x\rfloor\quad \Leftrightarrow \quad n\leq x<n+1 \quad \Leftrightarrow \quad \begin{cases} x-1<n \\ n\leq x \end{cases} \quad \Leftrightarrow \quad x-1< \lfloor x\rfloor \leq x

m=xm1<xm{xmm<x+1xx<x+1m=\lceil x\rceil\quad ⇔\quad m-1<x\leq m \quad \Leftrightarrow \quad \begin{cases} x\leq m \\ m<x+1 \end{cases} \quad \Leftrightarrow \quad x\leq \lceil x\rceil <x+1


So, x1<xxx<x+1x-1<\lfloor x \rfloor \leq x\leq \lceil x \rceil <x+1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS