Show that if x is a real number, then x − 1 < ⌊x⌋ ≤ x ≤
⌈x⌉ < x + 1.
n=⌊x⌋⇔n≤x<n+1⇔{x−1<nn≤x⇔x−1<⌊x⌋≤xn=\lfloor x\rfloor\quad \Leftrightarrow \quad n\leq x<n+1 \quad \Leftrightarrow \quad \begin{cases} x-1<n \\ n\leq x \end{cases} \quad \Leftrightarrow \quad x-1< \lfloor x\rfloor \leq xn=⌊x⌋⇔n≤x<n+1⇔{x−1<nn≤x⇔x−1<⌊x⌋≤x
m=⌈x⌉⇔m−1<x≤m⇔{x≤mm<x+1⇔x≤⌈x⌉<x+1m=\lceil x\rceil\quad ⇔\quad m-1<x\leq m \quad \Leftrightarrow \quad \begin{cases} x\leq m \\ m<x+1 \end{cases} \quad \Leftrightarrow \quad x\leq \lceil x\rceil <x+1m=⌈x⌉⇔m−1<x≤m⇔{x≤mm<x+1⇔x≤⌈x⌉<x+1
So, x−1<⌊x⌋≤x≤⌈x⌉<x+1x-1<\lfloor x \rfloor \leq x\leq \lceil x \rceil <x+1x−1<⌊x⌋≤x≤⌈x⌉<x+1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments