Show that if x is a real number, then x − 1 < ⌊x⌋ ≤ x ≤
⌈x⌉ < x + 1.
"n=\\lfloor x\\rfloor\\quad \\Leftrightarrow \\quad n\\leq x<n+1\n\\quad \\Leftrightarrow \\quad \\begin{cases}\nx-1<n\n\\\\\nn\\leq x\n\\end{cases}\n\\quad \\Leftrightarrow \\quad \nx-1<\n\\lfloor x\\rfloor \\leq x"
"m=\\lceil x\\rceil\\quad \u21d4\\quad m-1<x\\leq m \\quad \\Leftrightarrow \\quad \\begin{cases}\nx\\leq m\n\\\\\nm<x+1\n\\end{cases}\n\\quad \\Leftrightarrow \\quad \nx\\leq \n\\lceil x\\rceil <x+1"
So, "x-1<\\lfloor x \\rfloor \\leq x\\leq \\lceil x \\rceil <x+1"
Comments
Leave a comment