1) x is integer
⌈x⌉−⌊x⌋=x−x=0.
2) x is not integer
Let ⌊x⌋=n , then n<x<n+1 (or −n−1<−x<−n )
Let ⌈x⌉=m , then m−1<x<m
We have
(m−1)+(−n−1)<x−x<m−n
m−n−2<0<m−n
⌈x⌉−⌊x⌋−2<0<⌈x⌉−⌊x⌋
0<⌈x⌉−⌊x⌋<2
Since ⌈x⌉−⌊x⌋ is integer, it folows that ⌈x⌉−⌊x⌋=1
So, ⌈x⌉−⌊x⌋={0,x∈Z1,x∈Z
Comments