Show that if x is a real number, then ⌈x⌉ − ⌊x⌋ = 1 if x is
not an integer and ⌈x⌉ − ⌊x⌋ = 0 if x is an integer.
1) "x" is integer
"\\lceil x\\rceil -\\lfloor x \\rfloor =x-x=0".
2) "x" is not integer
Let "\\lfloor x \\rfloor=n" , then "n<x<n+1" (or "-n-1<-x<-n" )
Let "\\lceil x \\rceil =m" , then "m-1<x< m"
We have
"(m-1)+(-n-1)< x-x<m-n"
"m-n-2<0<m-n"
"\\lceil x\\rceil -\\lfloor x \\rfloor -2<0< \\lceil x\\rceil -\\lfloor x \\rfloor"
"0<\\lceil x\\rceil -\\lfloor x \\rfloor <2"
Since "\\lceil x\\rceil -\\lfloor x \\rfloor" is integer, it folows that "\\lceil x\\rceil -\\lfloor x \\rfloor =1"
So, "\\lceil x\\rceil -\\lfloor x \\rfloor \n=\\begin{cases}\n0, \\quad x\\in \\mathbb{Z}\n\\\\\n1, \\quad x\\not\\in \\mathbb{Z}\n\\end{cases}"
Comments
Leave a comment