Question #271830

Show that if x is a real number, then ⌈x⌉ − ⌊x⌋ = 1 if x is




not an integer and ⌈x⌉ − ⌊x⌋ = 0 if x is an integer.

1
Expert's answer
2021-11-29T05:11:57-0500

1) xx is integer

xx=xx=0\lceil x\rceil -\lfloor x \rfloor =x-x=0.


2) xx is not integer

Let x=n\lfloor x \rfloor=n , then n<x<n+1n<x<n+1 (or n1<x<n-n-1<-x<-n )

Let x=m\lceil x \rceil =m , then m1<x<mm-1<x< m

We have

(m1)+(n1)<xx<mn(m-1)+(-n-1)< x-x<m-n

mn2<0<mnm-n-2<0<m-n

xx2<0<xx\lceil x\rceil -\lfloor x \rfloor -2<0< \lceil x\rceil -\lfloor x \rfloor

0<xx<20<\lceil x\rceil -\lfloor x \rfloor <2

Since xx\lceil x\rceil -\lfloor x \rfloor is integer, it folows that xx=1\lceil x\rceil -\lfloor x \rfloor =1


So, xx={0,xZ1,x∉Z\lceil x\rceil -\lfloor x \rfloor =\begin{cases} 0, \quad x\in \mathbb{Z} \\ 1, \quad x\not\in \mathbb{Z} \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS